참고문헌
- Aelterman, P., S. Freguia, J. Keller, W. Verstraete, and K. Rabaey. 2008. The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol., 78:409-418. https://doi.org/10.1007/s00253-007-1327-8
- Aelterman, P., K. Rabaey, H.T. Pham, N. Boon, and W. Verstraete. 2006. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol., 40:3388-3394. https://doi.org/10.1021/es0525511
- Aulenta, F., P. Reale, A. Canosa, S. Rossetti, S. Panero, and M. Majone, 2010. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosens. Bioelectron., 25:1796 -1802. https://doi.org/10.1016/j.bios.2009.12.033
- Bard, A. and L. Faulkner, 2001. Electrochemical methodsfundamentals and applications. Wiley, New York.
- Bauen, A. 2006. Future energy sources and systems- Acting on climate change and energy security. J. Power Sources, 157: 893-901. https://doi.org/10.1016/j.jpowsour.2006.03.034
- Bergel, A., D. Feron, and A. Mollica, 2005. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Commun., 7:900-904. https://doi.org/10.1016/j.elecom.2005.06.006
- Berk, R. 1964. Bioelectrochemical energy conversion. Appl. Microbiol., 12:10-12.
- Bond, D.R., D.E. Holmes, L.M. Tender, and D.R.Lovley. 2002. Electrode-Reducing Microorganisms that Harvest Energy from Marine Sediments. Sci., 295:483-485. https://doi.org/10.1126/science.1066771
- Bond, D.R. and D.R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol., 69:1548-1555. https://doi.org/10.1128/AEM.69.3.1548-1555.2003
- Cao, X., X. Huang, P. Liang, N. Boon, M. Fan, L. Zhang, and X. Zhang. 2009. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ. Sci., 2: 498-501. https://doi.org/10.1039/b901069f
- Chen, G.-W., S.-J.Choi, T.-H. Lee, G.-Y. Lee, J.-H. Cha, and C.-W. Kim. 2008. Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl. Microbiol. Biotechnol., 79:379-388. https://doi.org/10.1007/s00253-008-1451-0
- Chen, Z., Y.-c. Huang, J.-h. Liang, F. Zhao, and Y.-g. Zhu. 2012. A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresour. Technol., 108:55-59. https://doi.org/10.1016/j.biortech.2011.10.040
- Cheng, S., H. Liu, and B.E. Logan. 2006. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol., 40:364- 369. https://doi.org/10.1021/es0512071
- Cheng, S. and B.E. Logan. 2007. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun., 9:492-496. https://doi.org/10.1016/j.elecom.2006.10.023
- Cheng, S., D. Xing, D.F. Call, and B.E. Logan. 2009. Direct biological conversion of electrical current into methane by Electromethanogenesis. Environ. Sci. Technol., 43:3953 -3958. https://doi.org/10.1021/es803531g
- Clauwaert, P., K. Rabaey, P. Aelterman, L. De Schamphelaire, T.H. Pham, P. Boeckx, N. Boon, and W. Verstraete. 2007a. Biological Denitrification in Microbial Fuel Cells. Environ. Sci. Technol., 41:3354-3360. https://doi.org/10.1021/es062580r
- Clauwaert, P., D. van der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey, and W. Verstraete. 2007b. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ. Sci. Technol., 41:7564- 7569. https://doi.org/10.1021/es0709831
- Cournet, A., M. Delia, A. Bergel, C. Roques, and M. Berge. 2010. Electrochemical reduction of oxygen catalyzed by a wide range of baceria including Gram-positive. Electrochem. Commun., 12:505-508. https://doi.org/10.1016/j.elecom.2010.01.026
- Deng, Q., X. Li, J. Zuo, A. Ling, and B.E. Logan. 2010. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J. Power Sources, 195:1130-1135. https://doi.org/10.1016/j.jpowsour.2009.08.092
- Dumas, C., R. Basseguy, and A. Bergel. 2008. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim. Acta, 53:2494-2500. https://doi.org/10.1016/j.electacta.2007.10.018
- Erable, B., N. Duteanu, S.M.S. Kumar, Y. Feng, M.M.Ghangrekar, and K. Scott. 2009. Nitric acid activation of graphite granules to increase the performance of the non- catalyzed oxygen reduction reaction (ORR) for MFC applications. Electrochem. Commun., 11:1547-1549. https://doi.org/10.1016/j.elecom.2009.05.057
- Fan, Y., S. Xu, R. Schaller, J. Jiao, F. Chaplen, and H. Liu. 2011. Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosens. Bioelectron., 26:1908-1912. https://doi.org/10.1016/j.bios.2010.05.006
- Feng, Y., Q. Yang, X. Wang, and B.E. Logan. 2010. Treatment of carbon fiber brush anodes for improving power generation in aircathode microbial fuel cells. J. Power Sources, 195:1841-1844. https://doi.org/10.1016/j.jpowsour.2009.10.030
- Franks, A., N. Malvankar, and K. Nevin. 2010. Bacterial biofilms: the powerhouse of a microbial fuel cell. Biofuels, 1:589 -604. https://doi.org/10.4155/bfs.10.25
- Geller, H., R. Schaeffer, A. Szklo, and M. Tolmasquim. 2004. Policies for advancing energy efficiency and renewable energy use in Brazil. Energy Policy, 32:1437-1450. https://doi.org/10.1016/S0301-4215(03)00122-8
- Gregory, K. and D. Lovley. 2005. Remediation and recovery of uranium from contaminated subsurface environments with electrode. Environ. Sci. Technol., 39:8943-8947. https://doi.org/10.1021/es050457e
- HaoYu, E., S. Cheng, K. Scott, and B. Logan. 2007. Microbial fuel cell performance with non-Pt cathode catalysts. J. Power Sources, 171:275-281. https://doi.org/10.1016/j.jpowsour.2007.07.010
- He, Z. and L.T. Angenent, 2006. Application of bacterial biocathodes in Microbial Fuel Cells. Electroanal., 18:2009-2015. https://doi.org/10.1002/elan.200603628
- Hu, Z. 2008. Electricity generation by a baffle-chamber membraneless microbial fuel cell. J. Power Sources, 179:27-33. https://doi.org/10.1016/j.jpowsour.2007.12.094
- Huang, L., X. Chai, S. Cheng, and G. Chen. 2011b. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chem. Eng. J., 166:652-661. https://doi.org/10.1016/j.cej.2010.11.042
- Huang, L.and B. Logan. 2008. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl. Microbiol. Biotechnol., 80:349-355. https://doi.org/10.1007/s00253-008-1546-7
- Huang, L., J.M. Regan, and X. Quan. 2011a. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour. Technol., 102L316-323. https://doi.org/10.1016/j.biortech.2010.06.096
- IEA 2006. World energy outlook. International Energy Agency, Paris.
- IEA 2011. Key world energy statistics. International Energy Agency, Paris.
- Ieropoulos, I., J. Greenman, and C. Melhuish. 2010. Improved energy output levels from small-scale Microbial Fuel Cells. Bioelectrochem., 78:44-50. https://doi.org/10.1016/j.bioelechem.2009.05.009
- IPCC 2000. Special report on emission scenarios. Summary for Policy Makers, Intergovernmental Panel on Climate Change, United Nations, Nairobi.
- Jeremiasse, A., H. Hamelers, and C. Buisman. 2010. Microbial electrolysis cell with a microbial biocathode. Bioelectrochem., 78:39-43. https://doi.org/10.1016/j.bioelechem.2009.05.005
- Katuwal, H. and A.K. Bohara, 2009. Biogas: A promising renewable technology and its impact on rural households in Nepal. Renew. Sustain. Energy Rev., 13:2668-2674. https://doi.org/10.1016/j.rser.2009.05.002
- Kim, J.R., B. Min, and B.E. Logan. 2005. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol., 68:23-30. https://doi.org/10.1007/s00253-004-1845-6
- Knights, S., J. Taylor, D. Wikinson, and D. Wainwright. 2003. Fuel cell anode structures for voltage reversal tolerance. Paten, Ballard Power Systems, Inc, USA.
- Lefebvre, O., A. Al-Mamun, and H. Ng. 2008b. A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci. Technol., 58:881-885. https://doi.org/10.2166/wst.2008.343
- Lefebvre, O., A. Al-Mamun, W.K. Ooi, Z. Tang, D.H.C. Chua, and H.Y. Ng. 2008a. An insight into cathode options for microbial fuel cells. Water Sci. Technol., 57:2031- 2037. https://doi.org/10.2166/wst.2008.611
- Leung, G.C. 2011. China's energy security: Perception and reality. Energy Policy, 39:1330-1337. https://doi.org/10.1016/j.enpol.2010.12.005
-
Li, Z., X. Zhang, and L. Lei. 2008. Electricity production during the treatment of real electroplating wastewater containing
$Cr^{6+}$ using microbial fuel cell. Process Biochem., 43:1352-1358. https://doi.org/10.1016/j.procbio.2008.08.005 - Liu, H., S. Cheng, and B. Logan. 2005. Production of electricity from acetate or butyrate using a single chamber microbial fuel cell. Environ. Sci. Technol., 39:5488-5493. https://doi.org/10.1021/es050316c
- Liu, H., R. Ramnarayanan, and B.E. Logan. 2004. Production of electricity during wastewater treatment using a wingle chamber microbial fuel cell. Environ. Sci. Technol., 38:2281-2285. https://doi.org/10.1021/es034923g
- Liu, Z., J. Liu, S. Zhang, X.-H. Xing, and Z. Su. 2011. Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process. Bioresour. Technol., 102:10221-10229. https://doi.org/10.1016/j.biortech.2011.08.053
- Logan, B.E., B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol., 40:5181-5192. https://doi.org/10.1021/es0605016
- Logan, B.E., C. Murano, K. Scott, N.D. Gray, and I.M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Water Res., 39:942-952. https://doi.org/10.1016/j.watres.2004.11.019
- Lojou, E., M. Durand, A. Dolla, and P. Bianco. 2002. Hydrogenase activity control at Desulfovibrio vulgaris cell-coated carbon electrodes: biochemical and chemical factors influencing the mediated bioelectrocatalysis. Electroanal., 14:913-922. https://doi.org/10.1002/1521-4109(200207)14:13<913::AID-ELAN913>3.0.CO;2-N
- Lu, N., S. Zhou, L. Zhuang, J. Zhnag, and J. Ni. 2009. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem. Eng. J., 43:246 -251. https://doi.org/10.1016/j.bej.2008.10.005
- Mao, Y., L. Zhang, D. Li, H. Shi, Y. Liu, and L. Cai. 2010. Power generation from a biocathode microbial fuel cell biocatalyzed by ferro/manganese-oxidizing bacteria. Electrochim. Acta, 55L7804-7808. https://doi.org/10.1016/j.electacta.2010.03.004
- Min, B., J. Kim, S. Oh, J.M. Regan, and B.E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Res., 39:4961-4968. https://doi.org/10.1016/j.watres.2005.09.039
- Min, B. and B.E. Logan. 2004. Continuous electricity generation from domestic wastewater and organic dubstrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 38:5809-5814. https://doi.org/10.1021/es0491026
- Mohan, S., S. Raghavulu, S. Shrikanth, S.Srikanth, and P. Sharma. 2007. Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: influence of substrate loading rate. Curr. Sci., 92:1720-1726.
- Mohanakrishna, G., S. Venkata Mohan, and P.N. Sarma. 2010. Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. J. Hazard. Mater., 177:487-494. https://doi.org/10.1016/j.jhazmat.2009.12.059
- Mulder, P. and J. Tembe. 2008. Rural electrification in an imperfect world: A case study from Mozambique. Energy Policy, 36:2785-2794. https://doi.org/10.1016/j.enpol.2008.05.018
- Nam, J.-Y., H.-W.Kim, K.-H. Lim, and H.-S. Shin. 2010. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single- chamber microbial fuel cell. Bioresour. Technol., 101:S33-S37. https://doi.org/10.1016/j.biortech.2009.03.062
- Nealson, K. and D. Saffarini. 1994. Iron and Manganese in Anaerobic Respiration: Environmental Significance, Physiology, and Regulation. Annu. Rev. Microbiol., 48:311-343. https://doi.org/10.1146/annurev.mi.48.100194.001523
- Oh, S. and B. Logan. 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol., 70:162-169. https://doi.org/10.1007/s00253-005-0066-y
- Oh, S. and B.E. Logan. 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res., 39:4673-4682. https://doi.org/10.1016/j.watres.2005.09.019
- Oh, S.E. and B.E. Logan. 2007. Voltage reversal during microbial fuel cell stack operation. J. Power Sources, 167:11-17. https://doi.org/10.1016/j.jpowsour.2007.02.016
- Osman, M.H., A.A. Shah, and F.C. Walsh. 2010. Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells. Biosens. Bioelectron., 26:3087-3102.
- Pant, D., G. Van Bogaert, L. Diels, and K. Vanbroekhoven. 2010. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol., 101:1533-1543. https://doi.org/10.1016/j.biortech.2009.10.017
- Park, D.H. and J.G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol., 181:2403-2410.
- Park, D.H. and J.G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng., 81:348-355. https://doi.org/10.1002/bit.10501
- Peng, L., S.-J. You, and J.-Y. Wang. 2010. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens. Bioelectron., 25:1248 -1251. https://doi.org/10.1016/j.bios.2009.10.002
- Potter, M. 1931. Electrical effects accompanying the decomposition of organic compounds. Proc. R Soc. London Ser. B, 91:465-480.
- Rabaey, K., P. Clauwaert, P. Aelterman, and W. Verstraete. 2005b. Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol., 39:8077-8082. https://doi.org/10.1021/es050986i
- Rabaey, K., P. Girguis, and L.K. Nielsen. 2011. Metabolic and practical considerations on microbial electrosynthesis. Curr. Opin. Biotechnol., 22:371-377. https://doi.org/10.1016/j.copbio.2011.01.010
- Rabaey, K. and W. Verstraete. 2005a. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 23:291-298. https://doi.org/10.1016/j.tibtech.2005.04.008
- Rao, J.R., G.J. Richter, F. Von Sturm, and E. Weidlich. 1976. The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectroch. Bioener., 3:139-150. https://doi.org/10.1016/0302-4598(76)85014-3
- Rhoads, A., H. Beyenal, and Z. Lewandowski. 2005. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol., 39:4666-4671. https://doi.org/10.1021/es048386r
- Rismani-Yazdi, H., S.M. Carver, A.D. Christy, and O.H. Tuovinen. 2008. Cathodic limitations in microbial fuel cells: An overview. J. Power Sources, 180:683-694. https://doi.org/10.1016/j.jpowsour.2008.02.074
- Rosenbaum, M., F. Aulenta, M. Villano, and L.T. Angenent. 2011. Cathode as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are invovled? Bioresour. Technol., 102:324-333. https://doi.org/10.1016/j.biortech.2010.07.008
- Rozendal, R.A., H.V.M. Hamelers, K. Rabaey, J. Keller, and C.J.N. Buisman. 2008. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol., 26:450-459. https://doi.org/10.1016/j.tibtech.2008.04.008
- Scott, K., G.A. Rimbu, K.P. Katuri, K.K.Prasad, and I.M. Head. 2007. Application of nodified carbon anodes in nicrobial Fuel cells. Process Saf. Environ., 85:481-488. https://doi.org/10.1205/psep07018
- Shin, S., Y. Choi, S. Na, S. Jung, and S. Kim. 2006. Development of bipolar plate stack type microbial fuel cell. Bull. Korean Chem. Soc., 27:281-285. https://doi.org/10.5012/bkcs.2006.27.2.281
- Stams, A.J.M., F.A.M. De Bok, C.M. Plugge, M.H.A. Van Eekert, J. Dolfing, and G. Schraa. 2006. Exocellular electron transfer in anaerobic microbial communities. Environ. Microbiol., 8:371-382. https://doi.org/10.1111/j.1462-2920.2006.00989.x
- Steinbusch, K., H. Hamelers, J. Schaap, C. Kampman, and C. Buisman. 2010. Bioelectrochemical ethanol production thorugh mediated acetate reduction by mixed culture. Environ. Sci. Technol., 44:513-517. https://doi.org/10.1021/es902371e
- Strycharz, S., T. Woodward, J. Johnson, K. Nevin, R. Sanford, F. Loeffler, and D.R. Lovley. 2008. Graphite electrodes as a sole electron donor for reductive dechlorination of tetracholoethene by Geobacter lovleyi. Appl. Environ. Microbiol., 74:5943-5847. https://doi.org/10.1128/AEM.00961-08
- Sun, J.-J., H.-Z. Zhao, Q.-Z. Yang, J. Song, and A. Xue. 2010. A novel layer-by-layer self-assembled carbon nanotube- based anode: Preparation, characterization, and application in microbial fuel cell. Electrochim. Acta, 55:3041-3047. https://doi.org/10.1016/j.electacta.2009.12.103
- Sun, J., Z. Bi, B. Hou, Y.-q. Cao, and Y.-Y. Hu. 2011. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Water Res., 45:283-291. https://doi.org/10.1016/j.watres.2010.07.059
- Tandukar, M., S. Huber, T. Onodera, and S. Pavlostathis. 2009. Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ. Sci. Technol., 43:8159-8165. https://doi.org/10.1021/es9014184
- Tang, X., K. Guo, H. Li, Z. Du, and J. Tian. 2011. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour. Technol., 102:3558 -3560. https://doi.org/10.1016/j.biortech.2010.09.022
- Ter Heijne, A., H.V.M. Hamelers, and C.J.N. Buisman. 2007. microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ. Sci. Technol., 41:4130-4134. https://doi.org/10.1021/es0702824
- Ter Heijne, A., H.V.M. Hamelers, M. Saakes, and C.J.N. Buisman. 2008. Performance of non-porous graphite and titaniumbased anodes in microbial fuel cells. Electrochim. Acta, 53:5697-5703. https://doi.org/10.1016/j.electacta.2008.03.032
- Umbach, F. 2010. Global energy security and the implications for the EU. Energy Policy:38:1229-1240. https://doi.org/10.1016/j.enpol.2009.01.010
-
Villano, M. F.Aulenta, C. Ciucci, T. Ferri, A. Giuliano, and M. Majone. 2010. Bioelectrochemical reduction of
$Co_{2}$ to$CH_{4}$ via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol., 101:3085- 3090. https://doi.org/10.1016/j.biortech.2009.12.077 - Wang, K., Y. Liu, and S. Chen. 2011. Improved microbial electrocatalysis with neutral red immobilized electrode. J. Power Sources, 196:164-168. https://doi.org/10.1016/j.jpowsour.2010.06.056
- Wang, X., S. Cheng, Y. Feng, M.D. Merrill, T. Saito, and B.E. Logan. 2009. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol., 43:6870 -6874. https://doi.org/10.1021/es900997w
- Wang, X., Y.J. Feng, and H. Lee. 2008. Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci. Technol., 57:1117-1121. https://doi.org/10.2166/wst.2008.064
- Watanabe, K. 2008. Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy. J. Biosci. Bioeng., 106:528-536. https://doi.org/10.1263/jbb.106.528
- Wei, J., P. Liang, X. Cao, and X. Huang. 2011a. Use of inexpensive semicoke and activated carbon as biocathode in microbial fuel cells. Bioresour. Technol., 102:10431- 10435. https://doi.org/10.1016/j.biortech.2011.08.088
- Wei, J., P. Liang, and X. Huang. 2011b. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol., 102:9335- 9344. https://doi.org/10.1016/j.biortech.2011.07.019
- Weiland, P. 2010. Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol., 85:849-860. https://doi.org/10.1007/s00253-009-2246-7
- Wrighton, K.C. and J.D. Coates. 2009. Microbial fuel cells: plug-in and power-on microbiology. Microbes, 4:281-287.
- You, S.J., N.Q. Ren, Q.L. Zhao, J.Y. Wang, and F.L. Yang. 2009. Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fibre brush as cathode material. Fuel Cells, 9:588-596. https://doi.org/10.1002/fuce.200900023
- Zhang, F., T. Saito, S. Cheng, M.A. Hickner, and B.E. Logan. 2010. Microbial Fuel Cell Cathodes With Poly (dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors. Environ. Sci. Technol., 44:1490-1495. https://doi.org/10.1021/es903009d
- Zhang, G.,Q. Zhao, Y. Jiao, K. Wang, D.-J. Lee, and N. Ren. 2012. Efficient electricity generation from sewage sludge usingbiocathode microbial fuel cell. Water Res., 46:43- 52. https://doi.org/10.1016/j.watres.2011.10.036
- Zhou, M., M. Chi, J.Luo, H. He, and T. Jin. 2011. An overview of electrode materials in microbial fuel cells. J. Power Sources, 196:4427-4435. https://doi.org/10.1016/j.jpowsour.2011.01.012
- Zhuang, L. and S. Zhou. 2009. Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack. Electrochem. Commun., 11:937-940. https://doi.org/10.1016/j.elecom.2009.02.027
피인용 문헌
- ChemInform Abstract: Application of Biocathodes in Microbial Fuel Cells: Opportunities and Challenges vol.44, pp.11, 2013, https://doi.org/10.1002/chin.201311275