DOI QR코드

DOI QR Code

Application of Biocathodes in Microbial Fuel Cells: Opportunities and Challenges

  • Gurung, Anup (Department of Biological Environment, Kangwon National University) ;
  • Oh, Sang-Eun (Department of Biological Environment, Kangwon National University)
  • 투고 : 2012.03.02
  • 심사 : 2012.05.23
  • 발행 : 2012.06.30

초록

The heavy reliance on fossil fuels, especially oil and gas has triggered the global energy crisis. Continued use of petroleum fuels is now widely recognized as unsustainable because of their depleting supplies and degradation to the environment. To become less dependent on fossil fuels, current world is shifting paradigm in energy by developing alternative energy sources mainly through the utilization of renewable energy sources. In particular, bioenergy recovery from wastes with the help of microorganism is viewed as one of the promising ways to mitigate the current global warming crisis as well as to supply global energy. It has been proved that microorganism can generate power by converting organic matter into electricity using microbial fuel cells (MFCs). MFC is a bioelectrochemical device that employs microbes to generate electricity from bio-convertible substrate such as wastewaters including municipal solid waste, industrial, agriculture wastes, and sewage. Sustainability, carbon neutral and generation of renewable energy are some of the major features of MFCs. However, the MFC technology is confronted with a number of issues and challenges such as low power production, high electrode material cost and so on. This paper reviews the recent developments in MFC technology with due consideration of electrode materials used in MFCs. In addition, application of biocathodes in MFCs has been discussed.

키워드

참고문헌

  1. Aelterman, P., S. Freguia, J. Keller, W. Verstraete, and K. Rabaey. 2008. The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol., 78:409-418. https://doi.org/10.1007/s00253-007-1327-8
  2. Aelterman, P., K. Rabaey, H.T. Pham, N. Boon, and W. Verstraete. 2006. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol., 40:3388-3394. https://doi.org/10.1021/es0525511
  3. Aulenta, F., P. Reale, A. Canosa, S. Rossetti, S. Panero, and M. Majone, 2010. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosens. Bioelectron., 25:1796 -1802. https://doi.org/10.1016/j.bios.2009.12.033
  4. Bard, A. and L. Faulkner, 2001. Electrochemical methodsfundamentals and applications. Wiley, New York.
  5. Bauen, A. 2006. Future energy sources and systems- Acting on climate change and energy security. J. Power Sources, 157: 893-901. https://doi.org/10.1016/j.jpowsour.2006.03.034
  6. Bergel, A., D. Feron, and A. Mollica, 2005. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Commun., 7:900-904. https://doi.org/10.1016/j.elecom.2005.06.006
  7. Berk, R. 1964. Bioelectrochemical energy conversion. Appl. Microbiol., 12:10-12.
  8. Bond, D.R., D.E. Holmes, L.M. Tender, and D.R.Lovley. 2002. Electrode-Reducing Microorganisms that Harvest Energy from Marine Sediments. Sci., 295:483-485. https://doi.org/10.1126/science.1066771
  9. Bond, D.R. and D.R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol., 69:1548-1555. https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  10. Cao, X., X. Huang, P. Liang, N. Boon, M. Fan, L. Zhang, and X. Zhang. 2009. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ. Sci., 2: 498-501. https://doi.org/10.1039/b901069f
  11. Chen, G.-W., S.-J.Choi, T.-H. Lee, G.-Y. Lee, J.-H. Cha, and C.-W. Kim. 2008. Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl. Microbiol. Biotechnol., 79:379-388. https://doi.org/10.1007/s00253-008-1451-0
  12. Chen, Z., Y.-c. Huang, J.-h. Liang, F. Zhao, and Y.-g. Zhu. 2012. A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresour. Technol., 108:55-59. https://doi.org/10.1016/j.biortech.2011.10.040
  13. Cheng, S., H. Liu, and B.E. Logan. 2006. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol., 40:364- 369. https://doi.org/10.1021/es0512071
  14. Cheng, S. and B.E. Logan. 2007. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun., 9:492-496. https://doi.org/10.1016/j.elecom.2006.10.023
  15. Cheng, S., D. Xing, D.F. Call, and B.E. Logan. 2009. Direct biological conversion of electrical current into methane by Electromethanogenesis. Environ. Sci. Technol., 43:3953 -3958. https://doi.org/10.1021/es803531g
  16. Clauwaert, P., K. Rabaey, P. Aelterman, L. De Schamphelaire, T.H. Pham, P. Boeckx, N. Boon, and W. Verstraete. 2007a. Biological Denitrification in Microbial Fuel Cells. Environ. Sci. Technol., 41:3354-3360. https://doi.org/10.1021/es062580r
  17. Clauwaert, P., D. van der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey, and W. Verstraete. 2007b. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ. Sci. Technol., 41:7564- 7569. https://doi.org/10.1021/es0709831
  18. Cournet, A., M. Delia, A. Bergel, C. Roques, and M. Berge. 2010. Electrochemical reduction of oxygen catalyzed by a wide range of baceria including Gram-positive. Electrochem. Commun., 12:505-508. https://doi.org/10.1016/j.elecom.2010.01.026
  19. Deng, Q., X. Li, J. Zuo, A. Ling, and B.E. Logan. 2010. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J. Power Sources, 195:1130-1135. https://doi.org/10.1016/j.jpowsour.2009.08.092
  20. Dumas, C., R. Basseguy, and A. Bergel. 2008. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim. Acta, 53:2494-2500. https://doi.org/10.1016/j.electacta.2007.10.018
  21. Erable, B., N. Duteanu, S.M.S. Kumar, Y. Feng, M.M.Ghangrekar, and K. Scott. 2009. Nitric acid activation of graphite granules to increase the performance of the non- catalyzed oxygen reduction reaction (ORR) for MFC applications. Electrochem. Commun., 11:1547-1549. https://doi.org/10.1016/j.elecom.2009.05.057
  22. Fan, Y., S. Xu, R. Schaller, J. Jiao, F. Chaplen, and H. Liu. 2011. Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosens. Bioelectron., 26:1908-1912. https://doi.org/10.1016/j.bios.2010.05.006
  23. Feng, Y., Q. Yang, X. Wang, and B.E. Logan. 2010. Treatment of carbon fiber brush anodes for improving power generation in aircathode microbial fuel cells. J. Power Sources, 195:1841-1844. https://doi.org/10.1016/j.jpowsour.2009.10.030
  24. Franks, A., N. Malvankar, and K. Nevin. 2010. Bacterial biofilms: the powerhouse of a microbial fuel cell. Biofuels, 1:589 -604. https://doi.org/10.4155/bfs.10.25
  25. Geller, H., R. Schaeffer, A. Szklo, and M. Tolmasquim. 2004. Policies for advancing energy efficiency and renewable energy use in Brazil. Energy Policy, 32:1437-1450. https://doi.org/10.1016/S0301-4215(03)00122-8
  26. Gregory, K. and D. Lovley. 2005. Remediation and recovery of uranium from contaminated subsurface environments with electrode. Environ. Sci. Technol., 39:8943-8947. https://doi.org/10.1021/es050457e
  27. HaoYu, E., S. Cheng, K. Scott, and B. Logan. 2007. Microbial fuel cell performance with non-Pt cathode catalysts. J. Power Sources, 171:275-281. https://doi.org/10.1016/j.jpowsour.2007.07.010
  28. He, Z. and L.T. Angenent, 2006. Application of bacterial biocathodes in Microbial Fuel Cells. Electroanal., 18:2009-2015. https://doi.org/10.1002/elan.200603628
  29. Hu, Z. 2008. Electricity generation by a baffle-chamber membraneless microbial fuel cell. J. Power Sources, 179:27-33. https://doi.org/10.1016/j.jpowsour.2007.12.094
  30. Huang, L., X. Chai, S. Cheng, and G. Chen. 2011b. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chem. Eng. J., 166:652-661. https://doi.org/10.1016/j.cej.2010.11.042
  31. Huang, L.and B. Logan. 2008. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl. Microbiol. Biotechnol., 80:349-355. https://doi.org/10.1007/s00253-008-1546-7
  32. Huang, L., J.M. Regan, and X. Quan. 2011a. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour. Technol., 102L316-323. https://doi.org/10.1016/j.biortech.2010.06.096
  33. IEA 2006. World energy outlook. International Energy Agency, Paris.
  34. IEA 2011. Key world energy statistics. International Energy Agency, Paris.
  35. Ieropoulos, I., J. Greenman, and C. Melhuish. 2010. Improved energy output levels from small-scale Microbial Fuel Cells. Bioelectrochem., 78:44-50. https://doi.org/10.1016/j.bioelechem.2009.05.009
  36. IPCC 2000. Special report on emission scenarios. Summary for Policy Makers, Intergovernmental Panel on Climate Change, United Nations, Nairobi.
  37. Jeremiasse, A., H. Hamelers, and C. Buisman. 2010. Microbial electrolysis cell with a microbial biocathode. Bioelectrochem., 78:39-43. https://doi.org/10.1016/j.bioelechem.2009.05.005
  38. Katuwal, H. and A.K. Bohara, 2009. Biogas: A promising renewable technology and its impact on rural households in Nepal. Renew. Sustain. Energy Rev., 13:2668-2674. https://doi.org/10.1016/j.rser.2009.05.002
  39. Kim, J.R., B. Min, and B.E. Logan. 2005. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol., 68:23-30. https://doi.org/10.1007/s00253-004-1845-6
  40. Knights, S., J. Taylor, D. Wikinson, and D. Wainwright. 2003. Fuel cell anode structures for voltage reversal tolerance. Paten, Ballard Power Systems, Inc, USA.
  41. Lefebvre, O., A. Al-Mamun, and H. Ng. 2008b. A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci. Technol., 58:881-885. https://doi.org/10.2166/wst.2008.343
  42. Lefebvre, O., A. Al-Mamun, W.K. Ooi, Z. Tang, D.H.C. Chua, and H.Y. Ng. 2008a. An insight into cathode options for microbial fuel cells. Water Sci. Technol., 57:2031- 2037. https://doi.org/10.2166/wst.2008.611
  43. Leung, G.C. 2011. China's energy security: Perception and reality. Energy Policy, 39:1330-1337. https://doi.org/10.1016/j.enpol.2010.12.005
  44. Li, Z., X. Zhang, and L. Lei. 2008. Electricity production during the treatment of real electroplating wastewater containing $Cr^{6+}$ using microbial fuel cell. Process Biochem., 43:1352-1358. https://doi.org/10.1016/j.procbio.2008.08.005
  45. Liu, H., S. Cheng, and B. Logan. 2005. Production of electricity from acetate or butyrate using a single chamber microbial fuel cell. Environ. Sci. Technol., 39:5488-5493. https://doi.org/10.1021/es050316c
  46. Liu, H., R. Ramnarayanan, and B.E. Logan. 2004. Production of electricity during wastewater treatment using a wingle chamber microbial fuel cell. Environ. Sci. Technol., 38:2281-2285. https://doi.org/10.1021/es034923g
  47. Liu, Z., J. Liu, S. Zhang, X.-H. Xing, and Z. Su. 2011. Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process. Bioresour. Technol., 102:10221-10229. https://doi.org/10.1016/j.biortech.2011.08.053
  48. Logan, B.E., B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol., 40:5181-5192. https://doi.org/10.1021/es0605016
  49. Logan, B.E., C. Murano, K. Scott, N.D. Gray, and I.M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Water Res., 39:942-952. https://doi.org/10.1016/j.watres.2004.11.019
  50. Lojou, E., M. Durand, A. Dolla, and P. Bianco. 2002. Hydrogenase activity control at Desulfovibrio vulgaris cell-coated carbon electrodes: biochemical and chemical factors influencing the mediated bioelectrocatalysis. Electroanal., 14:913-922. https://doi.org/10.1002/1521-4109(200207)14:13<913::AID-ELAN913>3.0.CO;2-N
  51. Lu, N., S. Zhou, L. Zhuang, J. Zhnag, and J. Ni. 2009. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem. Eng. J., 43:246 -251. https://doi.org/10.1016/j.bej.2008.10.005
  52. Mao, Y., L. Zhang, D. Li, H. Shi, Y. Liu, and L. Cai. 2010. Power generation from a biocathode microbial fuel cell biocatalyzed by ferro/manganese-oxidizing bacteria. Electrochim. Acta, 55L7804-7808. https://doi.org/10.1016/j.electacta.2010.03.004
  53. Min, B., J. Kim, S. Oh, J.M. Regan, and B.E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Res., 39:4961-4968. https://doi.org/10.1016/j.watres.2005.09.039
  54. Min, B. and B.E. Logan. 2004. Continuous electricity generation from domestic wastewater and organic dubstrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 38:5809-5814. https://doi.org/10.1021/es0491026
  55. Mohan, S., S. Raghavulu, S. Shrikanth, S.Srikanth, and P. Sharma. 2007. Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: influence of substrate loading rate. Curr. Sci., 92:1720-1726.
  56. Mohanakrishna, G., S. Venkata Mohan, and P.N. Sarma. 2010. Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. J. Hazard. Mater., 177:487-494. https://doi.org/10.1016/j.jhazmat.2009.12.059
  57. Mulder, P. and J. Tembe. 2008. Rural electrification in an imperfect world: A case study from Mozambique. Energy Policy, 36:2785-2794. https://doi.org/10.1016/j.enpol.2008.05.018
  58. Nam, J.-Y., H.-W.Kim, K.-H. Lim, and H.-S. Shin. 2010. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single- chamber microbial fuel cell. Bioresour. Technol., 101:S33-S37. https://doi.org/10.1016/j.biortech.2009.03.062
  59. Nealson, K. and D. Saffarini. 1994. Iron and Manganese in Anaerobic Respiration: Environmental Significance, Physiology, and Regulation. Annu. Rev. Microbiol., 48:311-343. https://doi.org/10.1146/annurev.mi.48.100194.001523
  60. Oh, S. and B. Logan. 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol., 70:162-169. https://doi.org/10.1007/s00253-005-0066-y
  61. Oh, S. and B.E. Logan. 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res., 39:4673-4682. https://doi.org/10.1016/j.watres.2005.09.019
  62. Oh, S.E. and B.E. Logan. 2007. Voltage reversal during microbial fuel cell stack operation. J. Power Sources, 167:11-17. https://doi.org/10.1016/j.jpowsour.2007.02.016
  63. Osman, M.H., A.A. Shah, and F.C. Walsh. 2010. Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells. Biosens. Bioelectron., 26:3087-3102.
  64. Pant, D., G. Van Bogaert, L. Diels, and K. Vanbroekhoven. 2010. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol., 101:1533-1543. https://doi.org/10.1016/j.biortech.2009.10.017
  65. Park, D.H. and J.G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol., 181:2403-2410.
  66. Park, D.H. and J.G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng., 81:348-355. https://doi.org/10.1002/bit.10501
  67. Peng, L., S.-J. You, and J.-Y. Wang. 2010. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens. Bioelectron., 25:1248 -1251. https://doi.org/10.1016/j.bios.2009.10.002
  68. Potter, M. 1931. Electrical effects accompanying the decomposition of organic compounds. Proc. R Soc. London Ser. B, 91:465-480.
  69. Rabaey, K., P. Clauwaert, P. Aelterman, and W. Verstraete. 2005b. Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol., 39:8077-8082. https://doi.org/10.1021/es050986i
  70. Rabaey, K., P. Girguis, and L.K. Nielsen. 2011. Metabolic and practical considerations on microbial electrosynthesis. Curr. Opin. Biotechnol., 22:371-377. https://doi.org/10.1016/j.copbio.2011.01.010
  71. Rabaey, K. and W. Verstraete. 2005a. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 23:291-298. https://doi.org/10.1016/j.tibtech.2005.04.008
  72. Rao, J.R., G.J. Richter, F. Von Sturm, and E. Weidlich. 1976. The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectroch. Bioener., 3:139-150. https://doi.org/10.1016/0302-4598(76)85014-3
  73. Rhoads, A., H. Beyenal, and Z. Lewandowski. 2005. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol., 39:4666-4671. https://doi.org/10.1021/es048386r
  74. Rismani-Yazdi, H., S.M. Carver, A.D. Christy, and O.H. Tuovinen. 2008. Cathodic limitations in microbial fuel cells: An overview. J. Power Sources, 180:683-694. https://doi.org/10.1016/j.jpowsour.2008.02.074
  75. Rosenbaum, M., F. Aulenta, M. Villano, and L.T. Angenent. 2011. Cathode as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are invovled? Bioresour. Technol., 102:324-333. https://doi.org/10.1016/j.biortech.2010.07.008
  76. Rozendal, R.A., H.V.M. Hamelers, K. Rabaey, J. Keller, and C.J.N. Buisman. 2008. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol., 26:450-459. https://doi.org/10.1016/j.tibtech.2008.04.008
  77. Scott, K., G.A. Rimbu, K.P. Katuri, K.K.Prasad, and I.M. Head. 2007. Application of nodified carbon anodes in nicrobial Fuel cells. Process Saf. Environ., 85:481-488. https://doi.org/10.1205/psep07018
  78. Shin, S., Y. Choi, S. Na, S. Jung, and S. Kim. 2006. Development of bipolar plate stack type microbial fuel cell. Bull. Korean Chem. Soc., 27:281-285. https://doi.org/10.5012/bkcs.2006.27.2.281
  79. Stams, A.J.M., F.A.M. De Bok, C.M. Plugge, M.H.A. Van Eekert, J. Dolfing, and G. Schraa. 2006. Exocellular electron transfer in anaerobic microbial communities. Environ. Microbiol., 8:371-382. https://doi.org/10.1111/j.1462-2920.2006.00989.x
  80. Steinbusch, K., H. Hamelers, J. Schaap, C. Kampman, and C. Buisman. 2010. Bioelectrochemical ethanol production thorugh mediated acetate reduction by mixed culture. Environ. Sci. Technol., 44:513-517. https://doi.org/10.1021/es902371e
  81. Strycharz, S., T. Woodward, J. Johnson, K. Nevin, R. Sanford, F. Loeffler, and D.R. Lovley. 2008. Graphite electrodes as a sole electron donor for reductive dechlorination of tetracholoethene by Geobacter lovleyi. Appl. Environ. Microbiol., 74:5943-5847. https://doi.org/10.1128/AEM.00961-08
  82. Sun, J.-J., H.-Z. Zhao, Q.-Z. Yang, J. Song, and A. Xue. 2010. A novel layer-by-layer self-assembled carbon nanotube- based anode: Preparation, characterization, and application in microbial fuel cell. Electrochim. Acta, 55:3041-3047. https://doi.org/10.1016/j.electacta.2009.12.103
  83. Sun, J., Z. Bi, B. Hou, Y.-q. Cao, and Y.-Y. Hu. 2011. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Water Res., 45:283-291. https://doi.org/10.1016/j.watres.2010.07.059
  84. Tandukar, M., S. Huber, T. Onodera, and S. Pavlostathis. 2009. Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ. Sci. Technol., 43:8159-8165. https://doi.org/10.1021/es9014184
  85. Tang, X., K. Guo, H. Li, Z. Du, and J. Tian. 2011. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour. Technol., 102:3558 -3560. https://doi.org/10.1016/j.biortech.2010.09.022
  86. Ter Heijne, A., H.V.M. Hamelers, and C.J.N. Buisman. 2007. microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ. Sci. Technol., 41:4130-4134. https://doi.org/10.1021/es0702824
  87. Ter Heijne, A., H.V.M. Hamelers, M. Saakes, and C.J.N. Buisman. 2008. Performance of non-porous graphite and titaniumbased anodes in microbial fuel cells. Electrochim. Acta, 53:5697-5703. https://doi.org/10.1016/j.electacta.2008.03.032
  88. Umbach, F. 2010. Global energy security and the implications for the EU. Energy Policy:38:1229-1240. https://doi.org/10.1016/j.enpol.2009.01.010
  89. Villano, M. F.Aulenta, C. Ciucci, T. Ferri, A. Giuliano, and M. Majone. 2010. Bioelectrochemical reduction of $Co_{2}$ to $CH_{4}$ via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol., 101:3085- 3090. https://doi.org/10.1016/j.biortech.2009.12.077
  90. Wang, K., Y. Liu, and S. Chen. 2011. Improved microbial electrocatalysis with neutral red immobilized electrode. J. Power Sources, 196:164-168. https://doi.org/10.1016/j.jpowsour.2010.06.056
  91. Wang, X., S. Cheng, Y. Feng, M.D. Merrill, T. Saito, and B.E. Logan. 2009. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol., 43:6870 -6874. https://doi.org/10.1021/es900997w
  92. Wang, X., Y.J. Feng, and H. Lee. 2008. Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci. Technol., 57:1117-1121. https://doi.org/10.2166/wst.2008.064
  93. Watanabe, K. 2008. Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy. J. Biosci. Bioeng., 106:528-536. https://doi.org/10.1263/jbb.106.528
  94. Wei, J., P. Liang, X. Cao, and X. Huang. 2011a. Use of inexpensive semicoke and activated carbon as biocathode in microbial fuel cells. Bioresour. Technol., 102:10431- 10435. https://doi.org/10.1016/j.biortech.2011.08.088
  95. Wei, J., P. Liang, and X. Huang. 2011b. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol., 102:9335- 9344. https://doi.org/10.1016/j.biortech.2011.07.019
  96. Weiland, P. 2010. Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol., 85:849-860. https://doi.org/10.1007/s00253-009-2246-7
  97. Wrighton, K.C. and J.D. Coates. 2009. Microbial fuel cells: plug-in and power-on microbiology. Microbes, 4:281-287.
  98. You, S.J., N.Q. Ren, Q.L. Zhao, J.Y. Wang, and F.L. Yang. 2009. Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fibre brush as cathode material. Fuel Cells, 9:588-596. https://doi.org/10.1002/fuce.200900023
  99. Zhang, F., T. Saito, S. Cheng, M.A. Hickner, and B.E. Logan. 2010. Microbial Fuel Cell Cathodes With Poly (dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors. Environ. Sci. Technol., 44:1490-1495. https://doi.org/10.1021/es903009d
  100. Zhang, G.,Q. Zhao, Y. Jiao, K. Wang, D.-J. Lee, and N. Ren. 2012. Efficient electricity generation from sewage sludge usingbiocathode microbial fuel cell. Water Res., 46:43- 52. https://doi.org/10.1016/j.watres.2011.10.036
  101. Zhou, M., M. Chi, J.Luo, H. He, and T. Jin. 2011. An overview of electrode materials in microbial fuel cells. J. Power Sources, 196:4427-4435. https://doi.org/10.1016/j.jpowsour.2011.01.012
  102. Zhuang, L. and S. Zhou. 2009. Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack. Electrochem. Commun., 11:937-940. https://doi.org/10.1016/j.elecom.2009.02.027

피인용 문헌

  1. ChemInform Abstract: Application of Biocathodes in Microbial Fuel Cells: Opportunities and Challenges vol.44, pp.11, 2013, https://doi.org/10.1002/chin.201311275