DOI QR코드

DOI QR Code

A Study on the Automatic Monitoring System for the Contact Center Using Emotion Recognition and Keyword Spotting Method

감성인식과 핵심어인식 기술을 이용한 고객센터 자동 모니터링 시스템에 대한 연구

  • 윤원중 (단국대학교 소프트웨어학과) ;
  • 김태홍 (단국대학교 소프트웨어학과) ;
  • 박규식 (단국대학교 소프트웨어학과)
  • Received : 2012.04.09
  • Accepted : 2012.05.18
  • Published : 2012.06.30

Abstract

In this paper, we proposed an automatic monitoring system for contact center in order to manage customer's complaint and agent's quality. The proposed system allows more accurate monitoring using emotion recognition and keyword spotting method for neutral/anger voice emotion. The system can provide professional consultation and management for the customer with language violence, such as abuse and sexual harassment. We developed a method of building robust algorithm on heterogeneous speech DB of many unspecified customers. Experimental results confirm the stable and improved performance using real contact center speech data.

본 논문에서는 고객의 불만관리 및 상담원의 상담품질 관리를 위한 고객센터 자동 모니터링 시스템에 대한 연구를 진행하였다. 제안된 시스템에서는 평상/화남의 2가지 감성에 대한 음성 감성인식 기술과 핵심어인식 기술을 사용하여 상담내역에 대한 보다 정확한 모니터링이 가능하고, 욕설, 성희롱 등의 언어폭력을 일삼는 고객에 대한 전문상담 및 관리가 가능하다. 서로 다른 환경에서 구축된 이종 음성 DB를 이용하여 불특정 고객들의 질의 음성에 안정적으로 동작할 수 있는 알고리즘을 개발하였으며, 실제 고객센터 상담내역 데이터를 이용하여 성능을 검증하였다.

Keywords

References

  1. 유기종, "금융기관 콜센터 근로자의 고충처리에 관한 실증 연구", 석사학위 논문, 고려대학교, 2010.
  2. S. Pathak and A. Kulkarni, "Recognizing emotions from speech", International Conference on Electronics Computer Technology (ICECT), pp. 107-109, 2011.
  3. C. Busso, A. Metallinou, and S.S. Narayanan, "Iterative feature normalization for emotional speech detection", International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5692-5695, 2011.
  4. C. Busso, S.B. Lee and S. Narayanan, "Analysis of Emotionally Salient Aspects of Fundamental Frequency for Emotion Detection", IEEE Transactions on Audio, Speech, and Language Processing, vol. 17, no. 4, pp. 582-596, May 2009. https://doi.org/10.1109/TASL.2008.2009578
  5. B. Vlasenko, B. Schuller, A. Wendemuth, and G. Rigoll, "Combining Frame and Turn-Level Information for Robust Recognition of Emotions within Speech," Proc. International Conference Spoken Language Processing, pp. 2225-2228, 2007.
  6. T. Kostoulas, I. Mporas , T. Ganchev , N. Fakotakis, "The Effect of Emotional Speech on a Smart-Home Application", Lecture Notes in Computer Science Vol. 5027, pp. 305-310, 2008.
  7. J.S. Park, J.H. Kim and Y.H. Oh, "Feature Vector Classification based Speech Emotion Recognition for Service Robots", IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, pp. 1590-1596, 2009. https://doi.org/10.1109/TCE.2009.5278031
  8. Hua A. and D. Litman, "Using System and User Performance Features to Improve Emotion Detection in Spoken Tutoring Dialogs", ICSLP2006, Pittsburgh, Pennsylvania, USA, 2006.
  9. D. Vicard, "Transient part recognition for continuous speech using transition spotting", International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 461-464, 1988.
  10. Q. Hong, C. Zhang, X. Chen and Y. Chen, "Embedded speech recognition system for intelligent robot", International Conference on Mechatronics and Machine Vision in Practice, pp. 35-38, 2007.
  11. R.C. Rose and D.B. Paul, "A hidden Markov model based keyword recognition system", International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 1, pp. 129-132, 1990.
  12. R.A. Sukkar and C. H. Lee, "Vocabulary independent discriminative utterance verification for nonkeyword rejection in subword based speech recognition", IEEE Transactions on Speech and Audio Processing, Vol. 4, pp. 420-429, 1996. https://doi.org/10.1109/89.544527
  13. K. Vicsi and D. Sztahó, "Emotional state recognition in customer service dialogues through telephone line", International Conference on Cognitive Infocommunications (CogInfoCom), pp. 1-4, 2011.
  14. P. Gupta and N. Rajput, "Two-Stream Emotion Recognition For Call Center Monitoring", Interspeech-2007, 2007.
  15. W.J. Yoon and K.S. Park, "Building Robust Emotion Recognition System on Heterogeneous Speech Databases", IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, pp. 747-750, 2011. https://doi.org/10.1109/TCE.2011.5955217
  16. S.J. Young and P.C. Woodland, "state clustering in hidden markov model-based continuous speech recognition", Computer Speech & Language, Vol. 8, pp. 369-383, 1994. https://doi.org/10.1006/csla.1994.1019
  17. 강봉석, "음성 신호를 이용한 문장독립 감정 인식 시스템," 석사학위 논문, 연세대학교, 2001.
  18. C. Cortes and V.N. Vapnik, "Support Vector Network", Machine Learning, Vol. 20, pp. 1-25, 1995.
  19. Barber, R. Flickner, M. Hafner, J. Lee, D. Niblack, W. Petkovie, D. and Ashlen, 'Query By Image Content and Its Applications.', Proceedings of COMPCON94, pp.424-429, 1994.