DOI QR코드

DOI QR Code

An Enhanced Community Detection Algorithm Using Modularity in Large Networks

대규모 네트워크에서 Modularity를 이용한 향상된 커뮤니티 추출 알고리즘

  • 한치근 (경희대학교 컴퓨터공학과) ;
  • 조무형 (경희대학교 일반대학원 컴퓨터공학과)
  • Received : 2011.12.30
  • Accepted : 2012.06.01
  • Published : 2012.06.30

Abstract

In this paper, an improved community detection algorithm based on the modularity is proposed. The existing algorithm does not consider the information that the nodes have in checking the possible modularity increase, hence the computation may be inefficient. The proposed algorithm computes the node degree (weight) and sorts them in non-increasing order. By checking the possible modularity value increase for the nodes in the nonincreasing order of node weights, the algorithm finds the final solution more quickly than the existing algorithm does. Through the computational experiments, it is shown that the proposed algorithm finds a modularity as good as the existing algorithm obtains.

본 논문에서는 modularity를 기반으로 한 향상된 커뮤니티 추출 알고리즘을 제안한다. 기존의 알고리즘은 modularity 값을 증가시키는 커뮤니티를 구축할 때 노드가 갖고 있는 정보를 고려하지 않음으로써, 계산을 비효율적으로 반복하여 수행한다. 제안하는 알고리즘은 노드의 degree(weight)를 계산하고 그것을 내림차순으로 정렬하고, 정렬된 순서대로 modularity 값의 증가여부를 확인함으로써, 반복되는 계산과정을 줄여 기존의 알고리즘보다 빠르게 최종 결과를 도출해낸다. 실험계산을 통해 제안하는 알고리즘이 더 짧은 시간 내에, 기존알고리즘이 구한 modularity 값보다 같거나, 향상된 값을 찾는다는 것을 보인다.

Keywords

References

  1. Santo Fortunato, Community Detection in Graphs, Physics Reports 486, 75-174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002
  2. Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte and Etienne Lefebvre, Fast Unfolding of Communities in Large Networks, Journal of Statistical Mechanics Volume 2008 October (2008).
  3. Linton C. Freeman, Centrality in Social Networks Conceptual Clarification, Social Networks, 1, 215-239 (1978/79). https://doi.org/10.1016/0378-8733(78)90021-7
  4. M.E.J. Newman and M. Girvan, Finding and Evaluating Community Structure in Networks, Phys. Rev. E 69, 026113 (2004). https://doi.org/10.1103/PhysRevE.69.026113
  5. Aaron Clauset, M. E. J. Newman, and Cristopher Moore, Finding Community Structure in Very Large Networks, Phys. Rev. E 70, 066111 (2004). https://doi.org/10.1103/PhysRevE.70.066111
  6. E.A. Leicht and M.E.J. Newman, Community Structure in Directed Networks, Phys. Rev. Letter, 100(11), 118703, (2007).
  7. Ian A. McCulloh and Kathleen M. Carley, Social Network Change Detection, Institute for Software Research, Carnegie Mellon, Working Paper CMU-CS-08-116, (2008).
  8. Peter Ronhovde, Zohar Nussinov, Multireso-lution Community Detection for Megascale Networks by Information-Based Replica Correlation, Phys. Rev. E 77, 036122 (2009).
  9. Santo Fortunato, Marc Barthelemy, Resolution Limit in Community Detection, Proc. Natl. Acad. Sci. USA 104 (1), 36-41 (2007). https://doi.org/10.1073/pnas.0605965104
  10. A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark Graphs for Testing Community Detection Algorithms, Phys. Rev. E 78(4), 046110 (2008). https://doi.org/10.1103/PhysRevE.78.046110
  11. A. Lancichinetti, S. Fortunato, Community Detection Algorithms: A Comparative Analysis, Phy. Rev. E 80, 056117 (2009). https://doi.org/10.1103/PhysRevE.80.056117
  12. Brian Ball, Brian Karrer, and M. E. J. Newman, An Efficient and Principled Method for Detecting Communities in Networks, Phys. Rev. E 84, 036103 (2011). https://doi.org/10.1103/PhysRevE.84.036103
  13. 강윤섭, 최승진, 공통 이웃 그래프 밀도를 사용한 소셜 네트워크 분석, 정보과학회 논문지 : 컴퓨팅 의 실제 및 레터, 제 16권 제 4호(2010).

Cited by

  1. A Method to Decide the Number of Additional Edges to Integrate the Communities in Social Network by Using Modularity vol.18, pp.7, 2013, https://doi.org/10.9708/jksci.2013.18.7.101