DOI QR코드

DOI QR Code

Effect of Al Content on the Gas-Phase Dehydration of Glycerol over Silica-Alumina-Supported Silicotungstic Acid Catalysts

  • Kim, Yong-Tae (Division of Energy Systems Research and Department of Chemical Engineering, Ajou University) ;
  • You, Su-Jin (Division of Energy Systems Research and Department of Chemical Engineering, Ajou University) ;
  • Jung, Kwang-Deog (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Park, Eun-Duck (Division of Energy Systems Research and Department of Chemical Engineering, Ajou University)
  • Received : 2012.02.24
  • Accepted : 2012.04.22
  • Published : 2012.07.20

Abstract

The gas-phase dehydration of glycerol to acrolein was carried out over silicotungstic acid ($H_4SiW_{12}O_{40}{\cdot}xH_2O$, HSiW) catalysts supported on $SiO_2$, ${\eta}-Al_2O_3$, and silica-aluminas with different Al contents. The HSiW catalysts supported on silica-aluminas showed higher glycerol conversions and acrolein yields during the initial 2 h at $315^{\circ}C$ than did $SiO_2$- and ${\eta}-Al_2O_3$-supported HSiW catalysts. Among the tested catalysts, HSiW/$Si_{0.9}Al_{0.1}O_x$ exhibited the highest space-time yield during the initial 2 h. The loaded HSiW species can change the acid types and suppress the formation of carbonaceous species on Al-rich silica-aluminas. The deactivated HSiW supported on silica-aluminas can be fully regenerated after calcination in air at $500^{\circ}C$. As long as the molar ratio between water and glycerol was in the range of 2-11, the acrolein selectivity increased significantly with increasing water content in the feed, while the surface carbon content decreased owing to the suppression of heavy compounds.

Keywords

References

  1. Zheng, Y.; Chen, X.; Shen, Y. Chem. Rev. 2008, 108, 5253.
  2. Katryniok, B.; Paul, S.; Bellière-Baca, V.; Rey, P.; Dumeignil, F. Green Chem. 2010, 12, 2079. https://doi.org/10.1039/c0gc00307g
  3. Bettahar, M. M.; Costentin, G.; Savary, L.; Lavalley, J. C. Appl. Catal. A: Gen. 1996, 145, 1. https://doi.org/10.1016/0926-860X(96)00138-X
  4. Chai, S.-H.; Wang, H.-P.; Liang, Y.; Xu, B.-Q. Green Chem. 2007, 9, 1130. https://doi.org/10.1039/b702200j
  5. Wang, F.; Dubois, J.-L.; Ueda, W. J. Catal. 2009, 268, 260. https://doi.org/10.1016/j.jcat.2009.09.024
  6. Suprun, W.; Lutecki, M.; Haber, T.; Papp, H. J. Mol. Catal. A: Chem. 2009, 309, 71. https://doi.org/10.1016/j.molcata.2009.04.017
  7. Suprun, W.; Lutecki, M.; Glaser, R.; Papp, H. J. Mol. Catal. A: Chem. 2011, 342-343, 91. https://doi.org/10.1016/j.molcata.2011.04.020
  8. Cavani, F.; Guidetti, S.; Marinelli, L.; Piccinini, M.; Ghedini, E.; Signoretto, M. Appl. Catal. B: Environ. 2010, 100, 197. https://doi.org/10.1016/j.apcatb.2010.07.031
  9. Lauriol-Garbay, P.; Millet, J. M. M.; Loridant, S.; Bellière-Baca, V.; Rey, P. J. Catal. 2011, 280, 68. https://doi.org/10.1016/j.jcat.2011.03.005
  10. Ulgen, A.; Hoelderich, W. F. Appl. Catal. A: Gen. 2011, 400, 34. https://doi.org/10.1016/j.apcata.2011.04.005
  11. Kim, Y. T.; Jung, K.-D.; Park, E. D. Appl. Catal. B: Environ. 2011, 107, 177. https://doi.org/10.1016/j.apcatb.2011.07.011
  12. Tsukuda, E.; Sato, S.; Takahashi, R.; Sodesawa, T. Catal. Commun. 2007, 8, 1349. https://doi.org/10.1016/j.catcom.2006.12.006
  13. Atia, H.; Armbruster, U.; Martin, A. J. Catal. 2008, 258, 71. https://doi.org/10.1016/j.jcat.2008.05.027
  14. Chai, S.-H.; Wang, H.-P.; Liang, Y.; Xu, B.-Q. Green Chem. 2008, 10, 1087. https://doi.org/10.1039/b805373a
  15. Alhanash, A.; Kozhevnikova, E. F.; Kozhevnikov, I. V. Appl. Catal. A: Gen. 2010, 378, 11. https://doi.org/10.1016/j.apcata.2010.01.043
  16. Katryniok, B.; Paul, S.; Capron, M.; Lancelot, C.; Belliere-Baca, V.; Rey, P.; Dumeignil, F. Green Chem. 2010, 12, 1922. https://doi.org/10.1039/c0gc00254b
  17. Kim, Y. T.; Jung, K.-D.; Park, E. D. Bull. Korean Chem. Soc. 2010, 31, 3283. https://doi.org/10.5012/bkcs.2010.31.11.3283
  18. Atia, H.; Armbruster, U.; Martin, A. Appl. Catal. A: Gen. 2011, 393, 331. https://doi.org/10.1016/j.apcata.2010.12.015
  19. Erfle, S.; Armbruster, U.; Bentrup, U.; Martin, A.; Brückner, A. Appl. Catal. A: Gen. 2011, 391, 102. https://doi.org/10.1016/j.apcata.2010.04.042
  20. Corma, A.; Huber, G. W.; Sauvanaud, L.; O'Connor, P. J. Catal. 2008, 257, 163. https://doi.org/10.1016/j.jcat.2008.04.016
  21. Kim, Y. T.; Jung, K.-D.; Park, E. D. Micropor. Mesopor. Mat. 2010, 131, 28. https://doi.org/10.1016/j.micromeso.2009.11.037
  22. Kim, Y. T.; Jung, K.-D.; Park, E. D. Appl. Catal. A: Gen. 2011, 393, 275. https://doi.org/10.1016/j.apcata.2010.12.007
  23. Kongpatpanich, K.; Nanok, T.; Boekfa, B.; Probst, M.; Limtrakul, J. Phys. Chem. Chem. Phys. 2011, 13, 6462. https://doi.org/10.1039/c0cp01720e
  24. Kim, Y. T.; Park, E. D. Korean J. Chem. Eng. 2010, 27, 1123. https://doi.org/10.1007/s11814-010-0210-y
  25. Mioe, U.B.; Dimitrijeviæ, R. Z.; Davidoviæ, M.; Nediae, Z. P.; Mitroviæ, M. M.; Colomban, P. H. J. Mater. Sci. 1994, 29, 3705. https://doi.org/10.1007/BF00357338
  26. Dias, J. A.; Caliman, E.; Dias, S. C. L.; Paulo, M.; de Souza, A. T. C. P. Catal. Today 2003, 85, 39. https://doi.org/10.1016/S0920-5861(03)00192-5
  27. Teague, C. M.; Li, X.; Biggin, M. E.; Lee, L.; Kim, J.; Gewirth, A. A. J. Phys. Chem. B 2004, 108, 1974. https://doi.org/10.1021/jp036533m
  28. Formo, E. V.; Wu, Z.; Mahurin, S. M.; Dai, S. J. Phys. Chem. C 2011, 115, 9068. https://doi.org/10.1021/jp1119525
  29. Scheithauer, M.; Grasselli, R. K.; Knozinger, H. Langmuir 1998, 14, 3019. https://doi.org/10.1021/la971399g
  30. Caliman, E.; Dias, J. A.; Dias, S. C. L.; Prado, A. G. S. Catal. Today 2005, 107-108, 816. https://doi.org/10.1016/j.cattod.2005.07.102

Cited by

  1. Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein vol.3, pp.8, 2013, https://doi.org/10.1021/cs400354p
  2. Vapor Phase Dehydration of Glycerol to Acrolein Over Phosphotungstic Acid Catalyst Supported on Niobia vol.144, pp.4, 2014, https://doi.org/10.1007/s10562-014-1204-x
  3. A Tailored Catalyst for the Sustainable Conversion of Glycerol to Acrolein: Mechanistic Aspect of Sequential Dehydration vol.7, pp.8, 2014, https://doi.org/10.1002/cssc.201402057
  4. Porous Silicon-Based Catalysts for the Dehydration of Glycerol to High Value-Added Products vol.11, pp.9, 2018, https://doi.org/10.3390/ma11091569