DOI QR코드

DOI QR Code

Preparation of Honeycomb-patterned Polyaniline-MWCNT/Polystyrene Composite Film and Studies on DC Conductivity

  • Kim, Won-Jung (Department of Chemistry, Institute of Basic Science, Inje University) ;
  • Huh, Do-Sung (Department of Chemistry, Institute of Basic Science, Inje University)
  • Received : 2012.02.21
  • Accepted : 2012.04.20
  • Published : 2012.07.20

Abstract

Conductive honeycomb-patterned polystyrene (PS) thin films were prepared by the formation of a polyaniline (PANI) thin layer on the surface of the patterned PS thin films using simple one-step chemical oxidative polymerization of aniline. The in situ chemical oxidation polymerization of aniline hydrochloride solution on the patterned structure of the PS films was conducted in the presence of multiwalled carbon nanotubes (MWCNT) to prepare the PANI-MWCNT/PS composite film. The concentration (wt %) of MWCNT was varied in the range of 1%-3% by weight. The dependence of surface morphology of the PANI/PS and PANI-MWCNT/PS composite film to the polymerization time was observed by scanning electron microscopy. The room temperature DC conductivity was obtained by the four-probe technique. The conductivity of the PANI-MWCNT/PS composite film was affected both by the MWCNT concentration and polymerization time. In addition, DC electrical field was loaded during the oxidative polymerization to affect the distribution of the MWCNT included in the composite film, varying the loading voltage in the range of 0.1-3.0 V. The conductivity of the PANI-MWCNT/PS composite film was increased as loading voltage rose. However, this increase stops at a voltage higher than the critical value.

Keywords

References

  1. Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Science 2002, 297, 787. https://doi.org/10.1126/science.1060928
  2. Overney, G.; Zhong, W.; Tománek, D. Z. Phys. D 1993, 27, 93. https://doi.org/10.1007/BF01436769
  3. Coleman, J. N.; Curran, S.; Dalton, A. B.; Dhabi, A. P.; McCarthy, B.; Blau, W.; Barklie, R. C. Phys. Rev. B 1998, 58, 7492. https://doi.org/10.1103/PhysRevE.58.7492
  4. Skotheim, T. A., Elsenbaumer, R. L., Reynolds, R. L., Eds.; Handbook of Conducting Polymers; Marcel Dekker: Academic Press: New York, 1998; p 823.
  5. Martin, C. R. Chem. Mater. 1996, 8, 1739. https://doi.org/10.1021/cm960166s
  6. Norris, I. D.; Shaker, M. M.; Ko, F. K.; MacDiarmid, A. G. Synth. Met. 2000, 114, 109. https://doi.org/10.1016/S0379-6779(00)00217-4
  7. Zhang, X. Y.; Goux, W. J.; Manohar, S. K. J. Am. Chem. Soc. 2004, 126, 4502. https://doi.org/10.1021/ja031867a
  8. Huang, J. X.; Virji, S.; Weiller, B. H.; Kaner, R. B. J. Am. Chem. Soc. 2003, 125, 314. https://doi.org/10.1021/ja028371y
  9. Wei, Z.; Zhang, Z.; Wan, M. Langmuir 2002, 18, 917. https://doi.org/10.1021/la0155799
  10. Wei, Z.; Wan, M. Adv. Mater. 2002, 14, 1314. https://doi.org/10.1002/1521-4095(20020916)14:18<1314::AID-ADMA1314>3.0.CO;2-9
  11. Yang, J.; Hou, J.; Zhu, W.; Xu, M.; Wan, M. Synth. Met. 1996, 80, 283. https://doi.org/10.1016/0379-6779(96)80215-3
  12. Yang, J.; Zhao, C.; Cui, D.; Hou, J.; Wan, M.; Xu, M. J. Appl. Polym. Sci. 1995, 56, 831. https://doi.org/10.1002/app.1995.070560708
  13. Das Neves, S.; De Paoli, M. A. Synth. Met. 1998, 96, 49. https://doi.org/10.1016/S0379-6779(98)00062-9
  14. Ruckenstein, E.; Park, J. S. J. Appl. Polym. Sci. 1991, 42, 925. https://doi.org/10.1002/app.1991.070420406
  15. Ruckenstein, E.; Yang, S. Synth. Met. 1993, 53, 283. https://doi.org/10.1016/0379-6779(93)91097-L
  16. Elyashevich, G. K.; Kozlov, A. G.; Gospodinova, N.; Mokreva, P.; Terlemezyan, L. J. Appl. Polym. Sci. 1997, 64, 2665. https://doi.org/10.1002/(SICI)1097-4628(19970627)64:13<2665::AID-APP20>3.0.CO;2-X
  17. Elyashevich, G. K.; Lavrentyev, V. K.; Kuryndin, I. S.; Rosova, E. Y. Synth. Met. 2001, 119, 277. https://doi.org/10.1016/S0379-6779(00)01100-0
  18. Elyashevich, G. K.; Terlemezyan, L.; Kuryndin, I. S.; Lavrentyev, V. K.; Mokreva, P.; Rosova, E. Y.; Sazanov, Y. N. Thermochim Acta 2001, 374, 23. https://doi.org/10.1016/S0040-6031(01)00475-0
  19. Martin, C. R.; Parthasarathy, R.; Menon, V. Synth. Met. 1993, 55, 1165. https://doi.org/10.1016/0379-6779(93)90218-L
  20. Penner, R. M.; Martin, C. R. J. Electrochem. Soc. 1986, 133, 2206. https://doi.org/10.1149/1.2108371
  21. Martin, C. R.; Van Dyke, L. S.; Cai, Z.; Liang, W. J. Am. Chem. Soc. 1990, 112, 8976. https://doi.org/10.1021/ja00180a050
  22. Lu, Y.; Ren, Y.; Wang, L.; Wang, X.; Li, C. Polymer 2009, 50, 2035. https://doi.org/10.1016/j.polymer.2009.02.026
  23. Widawski, G.; Rawiso, M.; Francois, B. Nature 1994, 369, 387. https://doi.org/10.1038/369387a0
  24. Nishikawa, T.; Nishida, J.; Ookura, R.; Nishimura, S. I.; Wada, S.; Karino, T.; Shimomura, M. Mater. Sci. Eng. C Biomim. Mater. Sens. Syst. 1999, 10, 141. https://doi.org/10.1016/S0928-4931(99)00110-1
  25. Karthaus, O.; Maruyama, N.; Cieren, X.; Shimomura, M.; Hasegawa, H.; Hashimoto, T. Langmuir 2000, 16, 6071. https://doi.org/10.1021/la0001732
  26. Kojima, M.; Hirai, Y.; Yabu, H.; Shimomura, M. Polym. J. 2009, 41, 667. https://doi.org/10.1295/polymj.PJ2009027
  27. Lord, H. T.; Quinn, J. F.; Angus, S. D.; Whittaker, M. R.; Stenzel, M. H.; Davis, T. P. J. Mater. Chem. 2003, 13, 2819. https://doi.org/10.1039/b304208c
  28. Stabler, C.; Wilks, K.; Sambanis, A.; Constantinidis, I. Biomaterials 2001, 22, 1301. https://doi.org/10.1016/S0142-9612(00)00282-9
  29. Wei, B.; Zhang, L.; Chen, G. New J. Chem. 2010, 34, 453. https://doi.org/10.1039/b9nj00670b
  30. Lee, C. H.; Liu, J. Y.; Chen, S. L.; Wang, Y. Z. Polym. J. 2007, 39, 138. https://doi.org/10.1295/polymj.PJ2006121
  31. Kim, B. S.; Basavaraja, C.; Jo, E. A.; Kim, D. G.; Huh, D. S. Polymer 2010, 51, 3365. https://doi.org/10.1016/j.polymer.2010.05.050
  32. Akamatsu, K.; Takei, S.; Mizuhata, M.; Kajinami, A. Thin Solid Films 2000, 359, 55. https://doi.org/10.1016/S0040-6090(99)00684-7
  33. Yabu, H.; Shimomura, M. Langmuir 2006, 22, 4992. https://doi.org/10.1021/la053486b

Cited by

  1. Fabrication of honeycomb‐patterned polyaniline composite films containing cellulose triacetate with high conductivity and mechanical stability vol.37, pp.9, 2012, https://doi.org/10.1002/pc.23459