DOI QR코드

DOI QR Code

Metabolic Fingerprints by Nano-baskets of 1,2-Alternate Calixarene and Emulsion Liquid Membranes

  • Mokhtari, Bahram (Razi Chemistry Research Center (RCRC), Shahreza Branch, Islamic Azad University) ;
  • Pourabdollah, Kobra (Razi Chemistry Research Center (RCRC), Shahreza Branch, Islamic Azad University)
  • Received : 2012.02.03
  • Accepted : 2012.04.17
  • Published : 2012.07.20

Abstract

A novel approach for metabolite extraction and fingerprinting was introduced based upon the nano-baskets and emulsion liquid membrane-nuclear magnetic resonance (ELM-NMR) technique. The objective of this method is optimizing the fingerprints, minimizing the metabolic variation from analysis, increasing the likelihood differences, and obtaining the maximum extraction yield. Low molecular weight metabolites in rat serum were recovered by ELMs using 12 nano-baskets of calixarene, as both emulsifier and carrier. The yields of ELMs were optimized by the method of one-at-a-time. According to NMR data, the maximum metabolic variation was achieved using scaffold 4 (4 wt %), n-decane membrane, stirring rate of 300 rpm, treat and phase ratios of 0.3 and 0.8, respectively. The results revealed that some calixarenes tend to extract non-specific macromolecules; and repeatability of fingerprints for 7-mediated ELM was maximum and for 3-mediated ELM was minimum. The yield of extractions was obtained to be higher for n-decane and lower for carbon tetrachloride. Among different membranes, the fingerprints by chlorinated liquid membranes were more repeatable than using toluene or n-decane.

Keywords

References

  1. Villas-Boas, S. G.; Bruheim, P. Anal. Biochem. 2007, 370, 87. https://doi.org/10.1016/j.ab.2007.06.028
  2. Wollenberger, A.; Ristau, O.; Schoffa, G. Pflugers Archiv fur die Gesamte Physiologie des Menschen und der Tiere 1960, 270, 399. https://doi.org/10.1007/BF00362995
  3. Harrison, D. E.; Maitra, P. K. Biochem. J. 1969, 112, 647.
  4. Li, N. N. Separating Hydrocarbons with Liquid Membranes; U.S. Patent 3410794, 1968.
  5. Kumbasar, R. A.; Sahin, I. J. Membr. Sci. 2008, 164, 712.
  6. Correia, P. F.; de Carvalho, J. M. R. J. Membr. Sci. 2003, 225, 41. https://doi.org/10.1016/S0376-7388(03)00319-3
  7. Frankenfeld, J. W.; Chan, R. P.; Li, N. N. Sep. Sci. Technol. 1981, 16, 385. https://doi.org/10.1080/01496398108068528
  8. Hou, W.; Papadopoulos, K. D. Chem. Eng. Sci. 1996, 51, 5043. https://doi.org/10.1016/0009-2509(96)00311-9
  9. Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 4029. https://doi.org/10.1080/00958972.2011.635790
  10. Mokhtari, B.; Pourabdollah, K.; Dalali, N. Chromatographia 2011, 73, 829. https://doi.org/10.1007/s10337-011-1954-1
  11. Mokhtari, B.; Pourabdollah, K.; Dallali, N. J. Radioanal. Nucl. Chem. 2011, 287, 921. https://doi.org/10.1007/s10967-010-0881-1
  12. Mokhtari, B.; Pourabdollah, K.; Dalali, N. J. Incl. Phenom. Macrocycl. Chem. 2011, 69, 1. https://doi.org/10.1007/s10847-010-9848-7
  13. Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2012, doi:10.1007/s10847-012-0210-0.
  14. Zinke, A.; Ziegler, E. mitteilung. Chem. Ber. 1944, 77, 264. https://doi.org/10.1002/cber.19440770322
  15. Gutsche, C. D.; Muthukrishnan, R. J. Org. Chem. 1978, 43, 4905. https://doi.org/10.1021/jo00419a052
  16. Mokhtari, B.; Pourabdollah, K. Bull. Korean Chem. Soc. 2011, 32, 3855. https://doi.org/10.5012/bkcs.2011.32.11.3855
  17. Mokhtari, B.; Pourabdollah, K. Bull. Korean Chem. Soc. 2011, 32, 3979. https://doi.org/10.5012/bkcs.2011.32.11.3979
  18. Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 3189. https://doi.org/10.1080/00958972.2011.616930
  19. Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 743. https://doi.org/10.1080/00958972.2011.555538
  20. Mokhtari, B.; Pourabdollah, K. Asian. J. Chem. 2011, 23, 4717.
  21. Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 3081. https://doi.org/10.1080/00958972.2011.613462
  22. Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 4079. https://doi.org/10.1080/00958972.2011.636040
  23. Mokhtari, B.; Pourabdollah, K. Supramol. Chem. 2011, 23, 696. https://doi.org/10.1080/10610278.2011.605452
  24. Mokhtari, B.; Pourabdollah, K. Desalination. 2012, 292, 1. https://doi.org/10.1016/j.desal.2012.02.004
  25. Mokhtari, B.; Pourabdollah, K. Bull. Korean Chem. Soc. 2012, 33, 1509. https://doi.org/10.5012/bkcs.2012.33.5.1509
  26. Mokhtari, B.; Pourabdollah, K. Supramol. Chem. 2012, 24, 255. https://doi.org/10.1080/10610278.2012.655278
  27. Mokhtari, B.; Pourabdollah, K. Electroanalysis 2012, 24, 219. https://doi.org/10.1002/elan.201100584
  28. Mokhtari, B.; Pourabdollah, K. J. Electrochem. Soc. 2012, 159, K61. https://doi.org/10.1149/2.048203jes
  29. Mokhtari, B.; Pourabdollah, K. J. Chilean Chem. Soc. 2012, 58, 827.
  30. Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2012, 73, 1. https://doi.org/10.1007/s10847-011-0062-z
  31. Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2012, 73, 269. https://doi.org/10.1007/s10847-011-0052-1
  32. Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2012. doi: 10.1007/s10847-011-0099-z
  33. Mokhtari, B.; Pourabdollah, K. Drug Chem. Toxicol. 2012. doi: 10.3109/01480545.2011.653490
  34. Mokhtari, B.; Pourabdollah, K. J. Therm. Anal. Calorim. 2012. doi: 10.1007/s10973-011-2014-7
  35. Mokhtari, B.; Pourabdollah, K. J. Sci. Food Agric. 2012. doi: 10.1002/jsfa.5688
  36. Mokhtari, B.; Pourabdollah, K. Electrochim. Acta 201, 76, 363.
  37. Mokhtari, B.; Pourabdollah, K. J. Chinese Chem. Soc. 2012. doi: 10.1002/jccs.201100737
  38. Mokhtari, B.; Pourabdollah, K. J. Liq. Chromatogr. R.T. 2012, doi: 10.1080/10826076.2011.643524
  39. Mokhtari, B.; Pourabdollah, K. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2012. doi: 10.1080/15533174.2012.654879
  40. Mokhtari, B.; Pourabdollah, K. Can. J. Chem. 2012, 90, 560. https://doi.org/10.1139/v2012-020

Cited by

  1. Application of nano-baskets in preconcentration of tetrahedral oxoanions in the produced water of oil wells vol.24, pp.12, 2012, https://doi.org/10.1080/10610278.2012.732225
  2. Extraction of alkali metals using emulsion liquid membrane by nano-baskets of calix[4]crown vol.29, pp.12, 2012, https://doi.org/10.1007/s11814-012-0085-1
  3. Inclusion separation of alkali metals in emulsion liquid membranes by nanobaskets of calix[4]crown-3 vol.29, pp.4, 2012, https://doi.org/10.1590/S0104-66322012000400010
  4. Electrochemical Study of Structural Effects in Complexation of Nano-baskets: Calix[4]-1,2-crown-3, -crown-4, -crown-5, -crown-6 vol.42, pp.8, 2012, https://doi.org/10.1080/15533174.2012.680131
  5. Separation of Alkali Metals by Emulsion Liquid Membranes Facilitated by Nano-Baskets of Calixarene pp.1520-5754, 2013, https://doi.org/10.1080/01496395.2013.794466
  6. Thin-film microextraction for the preconcentration of some endocrine disrupting chemicals in aqueous samples before chromatographic analysis vol.6, pp.16, 2014, https://doi.org/10.1039/C4AY00284A
  7. RETRACTED ARTICLE: Inclusion of piperidine-modified nano-baskets towards rare earth metals vol.78, pp.1-4, 2014, https://doi.org/10.1007/s10847-013-0312-3
  8. RETRACTED ARTICLE: Application of nano-baskets in polymer inclusion membranes vol.79, pp.1-2, 2014, https://doi.org/10.1007/s10847-013-0320-3
  9. Separation and Concentration of Anthocyanins from Jamun: An Integrated Process vol.202, pp.10, 2012, https://doi.org/10.1080/00986445.2014.935351