DOI QR코드

DOI QR Code

A Convenient Method to Prepare Ag Deposited N-TiO2 Composite Nanoparticles via NH3 Plasma Treatment

  • Hu, Shaozheng (Institute of Eco-environmental Sciences, Liaoning Shihua University) ;
  • Li, Fayun (Institute of Eco-environmental Sciences, Liaoning Shihua University) ;
  • Fan, Zhiping (Institute of Eco-environmental Sciences, Liaoning Shihua University)
  • Received : 2012.03.27
  • Accepted : 2012.04.17
  • Published : 2012.07.20

Abstract

Ag deposited N-$TiO_2$ composite nanoparticles were prepared via $NH_3$ plasma treatment. X-ray diffraction, UV-vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared $TiO_2$ samples. The plasma treatment did not change the phase composition and particle sizes of $TiO_2$ samples, but extended its absorption edges to the visible light region. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive dyestuff, methylene blue, under visible light. The photocatalytic activities of Ag deposited N-$TiO_2$ composite nanoparticles were much higher than Ag-$TiO_2$, N-$TiO_2$, and P25. A possible mechanism for the photocatalysis was proposed.

Keywords

References

  1. Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  2. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
  3. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, A.; Taga, Y. Science 2001, 293, 269. https://doi.org/10.1126/science.1061051
  4. Lindgren, T.; Mwabora, J. M.; Avendano, E.; Jonsson, J.; Hoel, A.; Granqvist, C. G.; Lindquist, S. E. J. Phys. Chem. B 2003, 107, 5709. https://doi.org/10.1021/jp027345j
  5. Qiao, M.; Wu, S. S.; Chen, Q.; Shen, J. Mater. Lett. 2010, 12, 1398.
  6. Shen, H.; Mi, L.; Xu, P.; Shen, W. D.; Wang, P. N. Appl. Surf. Sci. 2007, 17, 7024.
  7. Zhao, L.; Jiang, Q.; Lian, J. S. Appl. Surf. Sci. 2008, 15, 4620.
  8. Hu, S. Z.; Wang, A. J.; Li, X.; Lowe, H. J. Phys. Chem. Solid 2010, 71, 156. https://doi.org/10.1016/j.jpcs.2009.10.012
  9. Hu, S. Z.; Li, F. Y.; Fan, Z. P. Appl. Surf. Sci. 2011, 258, 1249. https://doi.org/10.1016/j.apsusc.2011.09.085
  10. Tian, B. Z.; Li, C. Z.; Gu, F.; Jiang, H. B. Catal. Commun. 2009, 10, 925. https://doi.org/10.1016/j.catcom.2008.12.029
  11. Kim, S.; Hwang, S. J.; Choi, W. J. Phys. Chem. B 2005, 109, 24260. https://doi.org/10.1021/jp055278y
  12. Ashkarran, A. A.; Aghigh, S. M.; kavianipour, M.; Farahani, N. J. Curr. Appl. Phys. 2011, 11, 1048. https://doi.org/10.1016/j.cap.2011.01.042
  13. Li, X.; Zhang, J.; Xu, W.; Jia, H.; Wang, X.; Yang, B.; Zhao, B.; Li, B.; Ozaki, Y. Langmuir 2003, 19, 4285. https://doi.org/10.1021/la0341815
  14. Yin, B.; Ma, H.; Wang, S.; Chen, S. J. Phys. Chem. B 2003, 107, 8898. https://doi.org/10.1021/jp0349031
  15. Pol, V. G.; Srivastava, D. N.; Palchik, O.; Palchik, V.; Slifkin, M. A.; Weiss, A. M.; Gedanken, A. Langmuir 2002, 8, 3352.
  16. Zhang, L. Z.; Yu, J. C. Catal. Commun. 2005, 6, 684. https://doi.org/10.1016/j.catcom.2005.06.014
  17. Cozzoli, P. D.; Comparelli, R.; Fanizza, E.; Curri, M. L.; Agostiano, A.; Laub, D. J. Am. Chem. Soc. 2004, 126, 3868. https://doi.org/10.1021/ja0395846
  18. Wang, Z.; Chen, M.; Wu, L. Chem. Mater. 2008, 20, 3251. https://doi.org/10.1021/cm8001223
  19. Hu, S. Z.; Li, F. Y.; Fan, Z. P. J. Hazard. Mater. 2011, 196, 248. https://doi.org/10.1016/j.jhazmat.2011.09.021
  20. Spurr, R. A.; Myers, H. Anal. Chem. 1957, 29, 760. https://doi.org/10.1021/ac60125a006
  21. Lin, J.; Lin, Y.; Liu, P.; Meziani, M. J.; Allard, L. F.; Sun, Y. P. J. Am. Chem. Soc. 2002, 124, 11514. https://doi.org/10.1021/ja0206341
  22. Oregan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  23. Ren, L. L.; Zeng, Y. P.; Jiang, D. L. Catal. Commun. 2009, 10, 645. https://doi.org/10.1016/j.catcom.2008.11.016
  24. Ozaki, H.; Fujimoto, N.; Iwamoto, S.; Inoue, M. Appl. Catal. B 2007, 70, 431. https://doi.org/10.1016/j.apcatb.2005.11.033
  25. Li, H. X.; Li, J. X.; Huo, Y. N. J. Phys. Chem. B 2006, 110, 1559. https://doi.org/10.1021/jp055830j
  26. Cong, Y.; Zhang, J. L.; Chen, F.; Anpo, M.; He, D. N. J. Phys. Chem. C 2007, 111, 10618. https://doi.org/10.1021/jp0727493
  27. Yamada, K.; Yamane, H.; Matsushima, S.; Nakamura, H.; Ohira, K.; Kouya, M.; Kumada, K. Thin Solid Films 2008, 516, 7482. https://doi.org/10.1016/j.tsf.2008.03.041
  28. Bao, X.; Muhler, M.; Schedel-Niedrig, Th.; Schlogl, R. Phys. Rev. B 1996, 54, 2249. https://doi.org/10.1103/PhysRevB.54.2249
  29. Zhang, H. M.; Liang, C. H.; Liu, J.; Tian, Z. F.; Wang, G. H.; Cai, W. P. Langmuir 2012, 28, 3938. https://doi.org/10.1021/la2043526
  30. Ozaki, H.; Iwamoto, S.; Inoue, M. J. Phys. Chem. C 2007, 111, 17061. https://doi.org/10.1021/jp0751211
  31. Nagaveni, K.; Hegde, M. S.; Madras, G. J. Phys. Chem. B 2004, 108, 20204. https://doi.org/10.1021/jp047917v

Cited by

  1. Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach vol.5, pp.10, 2013, https://doi.org/10.1039/c3nr00613a
  2. Preparation of heterostructured WO3/TiO2 catalysts from wood fibers and its versatile photodegradation abilities vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-01244-y
  3. Study on Catalytic Efficiency of Ag⁄N Co–Doped TiO2 Nanotube Arrays under Visible Light Irradiation vol.690-693, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.690-693.511
  4. Decolorization of Methylene Blue by Ag/SrSnO3 Composites under Ultraviolet Radiation vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/261395
  5. Adsorption Property of CS2 and COF2 on Nitrogen-Doped Anatase TiO2(101) Surfaces: A DFT Study vol.5, pp.34, 2012, https://doi.org/10.1021/acsomega.0c02499