DOI QR코드

DOI QR Code

Synthesis of High-Aspect-Ratio BaTiO3 Platelets by Topochemical Conversion and Fabrication of Textured Pb(Mg1/3Nb2/3)O3-32.5PbTiO3 Ceramics

  • Zhao, Wei (Tianjin Institute of Urban Construction, Department of Materials science & Engineering) ;
  • E, Lei (Tianjin Institute of Urban Construction, Department of Materials science & Engineering) ;
  • Ya, Jing (Tianjin Institute of Urban Construction, Department of Materials science & Engineering) ;
  • Liu, Zhifeng (Tianjin Institute of Urban Construction, Department of Materials science & Engineering) ;
  • Zhou, Heping (State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University)
  • Received : 2012.02.18
  • Accepted : 2012.04.16
  • Published : 2012.07.20

Abstract

Perovskite structured barium titanate particles ($BaTiO_3$) platelets were synthesized by molten salt synthesis and topochemical microcrystal conversion. As the precursors of $BaTiO_3$, plate-like $BaBi_4Ti_4O_{15}$ particles were first synthesized by the reaction of $Bi_4Ti_3O_{12}$, $BaCO_3$, and $TiO_2$ at $1080^{\circ}C$ for 3 h in $BaCl_2$-KCl molten salt. After the topochemical reactions, layer-structured $BaBi_4Ti_4O_{15}$ particles transformed to the perovskite $BaTiO_3$ platelets. $BaTiO_3$ particles with thickness of approximately $0.5{\mu}m$ and a length of $10-15{\mu}m$ retained the morphology feature of the $BaBi_4Ti_4O_{15}$ precursor. For <001> $Pb(Mg_{1/3}Nb_{2/3})O_3-32.5PbTiO_3$ (PMNT)-5 wt % PbO piezoelectric ceramics textured with 5 vol % of $BaTiO_3$ templates, the Lotgering factor reached 0.82, and $d_{33}$ was 870 pC/N.

Keywords

References

  1. Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Nature 2004, 43, 284.
  2. Sabolsky, E. M.; James, A. R.; Kwon, S.; Trolier-Mckinstry, S.; Messing, G. L. App. Phys. Lett. 2001, 78, 2551. https://doi.org/10.1063/1.1367291
  3. Thomas, R.; Stefan, D.; Carsten, S.; Ender, S.; Ralf, M. J. Am. Ceram. Soc. 2008, 91, 929. https://doi.org/10.1111/j.1551-2916.2007.02216.x
  4. Remeika, J. P. J. Am. Chem. Soc. 1954, 76, 940. https://doi.org/10.1021/ja01632a107
  5. Liu, D.; Yan, Y. K.; Zhou, H. P. J. Am. Ceram. Soc. 2007, 90, 1323. https://doi.org/10.1111/j.1551-2916.2007.01525.x
  6. Poterala, S. F.; Meyer, R. J.; Messing, G. L., Jr. J. Am. Ceram. Soc. 2011, 94, 2323. https://doi.org/10.1111/j.1551-2916.2010.04369.x
  7. Mallick, S.; Bowman, K. J.; King, A. H. Appl. Phys. Lett. 2005, 86, 182902. https://doi.org/10.1063/1.1919390
  8. Sanjaya Ranmohotti, K. G.; Josepha, E.; Choi, J.; Zhang, J.; Wiley, J. B. Adv. Mater. 2011, 23, 442. https://doi.org/10.1002/adma.201002274
  9. Poterala, S. F.; Chang, Y. F.; Clark, T.; Meyer, R. J.; Messing, G. L., Jr. Chem. Mater. 2010, 22, 2061. https://doi.org/10.1021/cm903315u
  10. Yan, Y. K.; Liu, D.; Zhao, W.; Zhou, H. P. J. Am. Ceram. Soc. 2007, 90, 2399. https://doi.org/10.1111/j.1551-2916.2007.01818.x

Cited by

  1. Predicting the Coupling Properties of Axially-Textured Materials vol.6, pp.11, 2013, https://doi.org/10.3390/ma6114967
  2. Tunable band gap of iron-doped lanthanum-modified bismuth titanate synthesized by using the thermal decomposition of a secondary phase vol.66, pp.9, 2015, https://doi.org/10.3938/jkps.66.1371
  3. Polycrystal piezoelectricity: revisiting the Voigt-Reuss-Hill approximation vol.6, pp.11, 2012, https://doi.org/10.1088/2053-1591/ab46f2