DOI QR코드

DOI QR Code

Hydrogen Bonding Analysis of Hydroxyl Groups in Glucose Aqueous Solutions by a Molecular Dynamics Simulation Study

  • Chen, Cong (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology) ;
  • Li, Wei Zhong (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology) ;
  • Song, Yong Chen (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology) ;
  • Weng, Lin Dong (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology) ;
  • Zhang, Ning (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology)
  • Received : 2011.12.22
  • Accepted : 2012.04.02
  • Published : 2012.07.20

Abstract

Molecular dynamics simulations have been performed to investigate hydrogen bonding characteristics of hydroxyl groups in glucose aqueous solutions with different concentrations. The hydrogen bonding abilities and strength of different O and H atom types have been calculated and compared. The acceptor/donor efficiencies have been predicted and it has been found that: (1) O2-HO2 and O3-HO3 are more efficient intramolecular hydrogen bonding acceptors than donors; (2) O1-HO1, O4-HO4 and O6-HO6 are more efficient intramolecular hydrogen bonding donors than acceptors; (5) O1-HO1 and O6-HO6 are more efficient intermolecular hydrogen bonding acceptors than donors while hydroxyl groups O2-HO2 and O4-HO4 are more efficient intermolecular hydrogen bonding donors than acceptors. The hydrogen bonding abilities of hydroxyl groups revealed that: (1) the hydrogen bonding ability of OH2-$H_w$ is larger than that of hydroxyl groups in glucose; (2) among the hydroxyl groups in glucose, the hydrogen bonding ability of O6-HO6 is the largest and the hydrogen bonding ability of O4-HO4 is the smallest; (3) the intermolecular hydrogen bonding ability of O6-HO6 is the largest; (4) the order for intramolecular hydrogen bonding abilities (from large to small) is O2-HO2, O1-HO1, O3-HO3, O6-HO6 and O4-HO4.

Keywords

References

  1. Mazur, P. Am. J. Physiol. 1984, 247, C125.
  2. Chen, C.; Li, W. Z.; Song, Y. C.; Yang, J. J. Mol. Liq. 2009, 146, 23. https://doi.org/10.1016/j.molliq.2009.01.009
  3. Sugimachi, K.; Roach, K. L.; Rhoads, D. B.; Tompkins, R. G.; Toner, M. Tissue Eng. 2006, 12, 579. https://doi.org/10.1089/ten.2006.12.579
  4. Holmstrup, M.; Overgaard, J.; Bindesbol, A. M.; Pertoldi, C.; Bayley, M. Soil Biology & Biochemistry 2007, 39, 2640. https://doi.org/10.1016/j.soilbio.2007.05.018
  5. Dinsmore, S. C.; Swanson, D. L. Canadian Journal of Zoology- Revue Canadienne De Zoologie 2008, 86, 1095. https://doi.org/10.1139/Z08-088
  6. Martinez, V. Y.; Nieto, A. B.; Castro, M. A.; Salvatori, D.; Alzamora, S. M. J. Food Eng. 2007, 83, 394. https://doi.org/10.1016/j.jfoodeng.2007.03.025
  7. Lee, S. L.; Debenedetti, P. G.; Errington, J. R. J. Chem. Phys. 2005; p 122 .
  8. Paolantoni, M.; Sassi, P.; Morresi, A.; Santini, S. J. Chem. Phys. 2007, 127, 024504. https://doi.org/10.1063/1.2748405
  9. Te, J. A.; Tan, M. L.; Ichiye, T. Chem. Phys. Lett. 2010, 491, 218. https://doi.org/10.1016/j.cplett.2010.04.020
  10. Chen, C.; Li, W.-Z.; Song, Y.-C.; Weng, L.-D. Acta Physicochimica Sinica 2011, 27, 1372.
  11. Suzuki, T. PCCP 2008, 10, 96. https://doi.org/10.1039/b708719e
  12. Mason, P. E.; Neilson, G. W.; Enderby, J. E.; Saboungi, M. L.; Brady, J. W. J. Phys. Chem. B 2005, 109, 13104. https://doi.org/10.1021/jp040622x
  13. Max, J. J.; Chapados, C. J. Phys. Chem. A 2007, 111, 2679. https://doi.org/10.1021/jp066882r
  14. Paolantoni, M.; Comez, L.; Fioretto, D.; Gallina, M. E.; Morresi, A.; Sassi, P.; Scarponi, F. Journal of Raman Spectroscopy 2008, 39, 238. https://doi.org/10.1002/jrs.1909
  15. Aroulmoji, V.; Mathlouthi, M.; Feruglio, L.; Murano, E.; Grassi, M. Food Chem. 2011.
  16. Venable, R. M.; Hatcher, E.; Guvench, O.; Alexander, J.; MacKerell, D.; Pastor, R. W. J. Phys. Chem. B 2010, 114, 12501. https://doi.org/10.1021/jp105549s
  17. Chen, C.; Li, W. Z.; Song, Y. C.; Weng, L. D.; Zhang, N. Computational and Theoretical Chemistry 2012, 984, 85. https://doi.org/10.1016/j.comptc.2012.01.013
  18. Phillips, J. C.; Braun, R.; Wang, W.; Gumbar, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26, 1781. https://doi.org/10.1002/jcc.20289
  19. Guvench, O.; Greene, S. N.; Kamath, G.; Brady, J. W.; Venable, R.M.; Pastor, R. W.; Alexander, J.; MacKerell, D. J. Comput. Chem. 2008, 29, 2543. https://doi.org/10.1002/jcc.21004
  20. Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089. https://doi.org/10.1063/1.464397
  21. Ryckaert, J. P. Mol. Phys. 1985, 55, 549. https://doi.org/10.1080/00268978500101531
  22. Tuckerman, M.; Berne, B. J.; Martyna, G. J. The Journal of Chemical Physics 1992, 97, 1990. https://doi.org/10.1063/1.463137
  23. Weng, L. D.; Chen, C.; Zuo, J. G.; Li, W. Z. J. Phys. Chem. A 2011, 115, 4729. https://doi.org/10.1021/jp111162w
  24. Henchman, R. H.; Irudayam, S. J. The Journal of Physical Chemistry B 2010, 114, 16792. https://doi.org/10.1021/jp105381s
  25. Skarmoutsos, L.; Guardia, E.; Samios, J. The Journal of Chemical Physics 2010, 133, 014504. https://doi.org/10.1063/1.3449142
  26. Elola, M. D.; Ladanyi, B. M. The Journal of Chemical Physics 2006, 125, 184506. https://doi.org/10.1063/1.2364896
  27. Lee, H.-S.; Tuckerman, M. E. The Journal of Chemical Physics 2007, 126, 164501. https://doi.org/10.1063/1.2718521
  28. Guardia, E.; Marti, J.; Padro, J. A.; Saiz, L.; Komolkin, A. V. Journal of Molecular Liquids 2002, 96-97, 3. https://doi.org/10.1016/S0167-7322(01)00342-7
  29. Root, L. J.; Berne, B. J. J. Chem. Phys. 1997, 107, 4350. https://doi.org/10.1063/1.474776
  30. Petrenko, V. E.; Antipova, M. L. Structural Chemistry 2011, 22, 471. https://doi.org/10.1007/s11224-011-9768-1

Cited by

  1. Thermally Sensitive Self-Assembly of Glucose-Functionalized Tetrachloro-Perylene Bisimides: From Twisted Ribbons to Microplates vol.30, pp.37, 2014, https://doi.org/10.1021/la502532g
  2. Quantification of Protein Hydration, Glass Transitions, and Structural Relaxations of Aqueous Protein and Carbohydrate–Protein Systems vol.119, pp.23, 2015, https://doi.org/10.1021/acs.jpcb.5b01593
  3. Preparation of membrane-mimicking lamellar structures by molecular confinement of hybrid nanocomposites vol.55, pp.20, 2012, https://doi.org/10.1039/c8cc09399g
  4. Efficient dual-function inhibitors for prevention of gas hydrate formation and CO2/H2S corrosion inside oil and gas pipelines vol.431, pp.p2, 2012, https://doi.org/10.1016/j.cej.2021.134098