DOI QR코드

DOI QR Code

Comparative Study of Holmium (III) Selective Sensors Based on Thiacalixarene and Calixarene Derivatives as an Ionophore

  • Received : 2012.02.29
  • Accepted : 2012.04.02
  • Published : 2012.07.20

Abstract

The two chelates based on calix[4]arene and thiacalix[4]arene have been synthesized and used as neutral ionophores for preparing PVC based membrane sensor selective to $Ho^{3+}$ ion. The addition of potassium tetrakis(4-chlorophenyl)borate (KTpClPB) and various plasticizers, viz., NDPE, o-NPOE, DOP, TEP and DOS have been found to improve significantly the performance of the sensors. The best performance was obtained with the sensor no. 6 having membrane of $L_2$ with composition (w/w) ionophore (2%): KTpClPB (4%): PVC (37%): NDPE (57%). This sensor exhibits Nernatian response with slope $21.10{\pm}0.3mV/decade$ of activity in the concentration range $3.0{\times}10^{-8}-1.0{\times}10^{-2}M\;Ho^{3+}\;ion$, with a detection limit of $1.0{\times}10^{-8}M$. The proposed sensor performs satisfactorily over a wide pH range of 2.8-10, with a fast response time (5 s). The sensor was also found to work successfully in partially non-aqueous media up to 25% (v/v) content of methanol, ethanol and acetonitrile, and can be used for a period of 4 months without any significant drift in potential. The electrode was also used for the determination of $Ho^{3+}$ ions in synthetic mixtures of different ions and the determination of the arsenate ion in different water samples.

Keywords

References

  1. Mahajan, R. K.; Kaur, I.; Kumar, M. Sens. Actuators B 2003, 91, 26. https://doi.org/10.1016/S0925-4005(03)00062-5
  2. Kabalin, J.; Gilling, P.; Fraundorfer, M. J. Clin. Laser Med. Surg. 1998, 16, 21.
  3. Holleman, A. F.; Wiberg, E. Inorganic Chemistry; Academic Press: New York, 2001; p 1693.
  4. MacDonald, R. P. Clinical Chemistry 1964, 10, 1117.
  5. Vicente, O.; Padro, A.; Martinez, L.; Olsina, R.; Marchevsky, E. Spectrochim. Acta Part B 1998, 53, 1281. https://doi.org/10.1016/S0584-8547(98)00089-5
  6. Houk, R. S.; Fassel, V. A.; Reach, G. D.; Svec, H. J. Anal. Chem. 1980, 52, 2283. https://doi.org/10.1021/ac50064a012
  7. Al-Merey, R.; Bowen, H. M. J. Radioanal Nuc. Chem. 1991, 153, 221. https://doi.org/10.1007/BF02176877
  8. Anbu, M.; Rao, T. P.; Iyer, C. S. P.; Damodaran, A. D. Chem. Anal. (Warsaw) 1996, 41, 781.
  9. Wang, N. X.; Jiang, W.; Si, Z. K.; Qi, Z. Analyst 1996, 121, 1317. https://doi.org/10.1039/an9962101317
  10. Wang, N. X.; Jiang, W.; Si, Z. K.; Qi, Z. Mikrochim. Acta 1997, 126, 251. https://doi.org/10.1007/BF01242329
  11. Li, J.; Liu, S.; Mao, X.; Gao, P.; Yan, Z. J. Electroanal. Chem. 2004, 561, 137. https://doi.org/10.1016/j.jelechem.2003.06.012
  12. Gupta, V. K.; Singh, A. K.; Gupta, B. Anal. Chim. Acta 2006, 575, 198. https://doi.org/10.1016/j.aca.2006.05.090
  13. Gupta, V. K.; Jain, A. K.; Singh, L. P.; Khurana, U. Anal. Chim. Acta 1997, 355, 33. https://doi.org/10.1016/S0003-2670(97)81609-1
  14. Srivastava, S. K.; Gupta, V. K.; Jain, S. Anal. Chem. 1996, 68, 1272. https://doi.org/10.1021/ac9507000
  15. Gupta, V. K.; Mangla, R.; Khurana, U.; Kumar, P. Electroanalysis 1999, 11, 573. https://doi.org/10.1002/(SICI)1521-4109(199906)11:8<573::AID-ELAN573>3.0.CO;2-Z
  16. Jain, A. K.; Gupta, V. K.; Singh, L. P. Analytical Proceedings Including Analytical Communication 1995, 32, 263. https://doi.org/10.1039/ai9953200263
  17. Jain, A. K.; Gupta, V. K.; Singh, L. P.; Srivastava, P.; Raisoni, J. R. Talanta 2005, 65, 716. https://doi.org/10.1016/j.talanta.2004.07.041
  18. Prasad, R.; Gupta, V. K.; Kumar, A. Anal. Chim. Acta 2004, 508, 61. https://doi.org/10.1016/j.aca.2003.11.056
  19. Singh, A. K.; Gupta, V. K.; Gupta, B. Anal. Chim. Acta 2007, 585, 171. https://doi.org/10.1016/j.aca.2006.11.074
  20. Jain, A. K.; Gupta, V. K.; Khurana, U.; Singh, L. P. Electroanalysis 1997, 9, 857. https://doi.org/10.1002/elan.1140091110
  21. Jain, A. K.; Gupta, V. K.; Singh, L. P.; Khurana, U. Analyst 1997, 122, 583. https://doi.org/10.1039/a608421d
  22. Ganjali, M. R.; Rasoolipour, S.; Rezapour, M.; Norouzi, P.; Tajarodi, A.; Hanifehpour, Y. Electroanalysis 2005, 17, 1534. https://doi.org/10.1002/elan.200403251
  23. Gupta, V. K.; Goyal, R. N.; Pal, M. K.; Sharma, R. A. Anal. Chim. Acta 2009, 27, 161.
  24. Ganjali, M. R.; Norouzi, P.; Mirnaghi, F. S.; Riahi, S.; Faridbod, F. Sensors Journal, IEEE 2007, 7, 138.
  25. Zammani, H. A.; Langroodi, S.; Meghdadi, S. E-Journal of Chemistry 2011, 8, 237. https://doi.org/10.1155/2011/437938
  26. Ganjali, M. R.; Nemati, R.; Faridbod, F.; Norouzi, P.; Darviche, F.Int. J. Electrochem. Sci. 2008, 3, 1288.
  27. Peper, S.; Ceresa, A.; Bakker, E. Anal. Chem. 2001, 73, 3768. https://doi.org/10.1021/ac001475b
  28. Zammani, H. A.; Fatemeh, R.; Reyabbi, N. F.; Arvinfar, A.; Alihossien, I.; Ganjali, M. R.; Faridbod, F.; Masoud, S. N. Chinese Journal of Chem. 2011, 29, 1523. https://doi.org/10.1002/cjoc.201180274
  29. Telting-Diaz, M.; Bakker, E. Anal. Chem. 2001, 73, 5582. https://doi.org/10.1021/ac010526h
  30. Ganjali, M. R.; Rasoolipour, S.; Rezapour, M.; Norouzi, P.; Amirnasr, M.; Meghdadi, S. J. Braz.Chem. Soc. 2006, 17, 1211.
  31. Ganjali, M. R.; Norouzi, P.; Adib, M.; Ahmadalinezhad, A. Anal. Lett. 2006, 39, 1075. https://doi.org/10.1080/00032710600620427
  32. Deng, G.; Sakaki, T.; Kawahara, Y.; Shinkai, S. Supramol. Chem. 1993, 2, 71. https://doi.org/10.1080/10610279308027510
  33. Chung, T. D.; Park, J.; Kim, J.; Lim, H.; Choi, M. J.; Kim, J. R.; Chang, S. K.; Kim, H. Anal. Chem. 2001, 73, 3975. https://doi.org/10.1021/ac001050p
  34. Craggs, A.; Moody, G. J.; Thomas, J. D. R. J. Chem. Educ. 1974, 51, 541. https://doi.org/10.1021/ed051p541
  35. Rouhollahi, A.; Ganjali, M. R.; Shamsipur, M. Talanta 1998, 46, 1341. https://doi.org/10.1016/S0039-9140(97)00421-9
  36. Guilbault, G. G.; Durst, R. A.; Frant, M. S.; Freiser, H.; Hansen, E. H.; Light, T. S.; Pungor, E.; Rechnitz, G.; Rice, M. N.; Rohm, T. J.; Simon, W.; Thomas, D. R. Pure Appl. Chem. 1976, 48, 127. https://doi.org/10.1351/pac197648010127
  37. Debye, P.; Huckel, E. Phys. Z 1923, 24, 305.
  38. Mittal, V. K.; Kumar, A.; Gupta, N.; Kaur, S.; Kumar, S. Anal. Chim. Acta 2007, 585, 161. https://doi.org/10.1016/j.aca.2006.12.011
  39. Bakker, E.; Buhlmann, P.; Pretsch, E. Electroanalysis 1999, 11, 915. https://doi.org/10.1002/(SICI)1521-4109(199909)11:13<915::AID-ELAN915>3.0.CO;2-J
  40. Khayatian, G.; Shariati, S.; Salimi, A. Bull. Korean Chem. Soc. 2003, 24, 421. https://doi.org/10.5012/bkcs.2003.24.4.421
  41. Umezawa, Y.; Buhlmann, P.; Umezawa, K.; Hamada, N.; Aokli, H.; Nakanishli, J.; Sato, M.; Xiao, K. P.; Nishimura, Y. Pure Appl. Chem. 2002, 74, 923. https://doi.org/10.1351/pac200274060923
  42. Saez de Viteri, F. J.; Diamond, D. Analyst 1994, 119, 749. https://doi.org/10.1039/an9941900749
  43. Yanming, M.; Bakker, E. Anal. Chem. 2001, 73, 5582. https://doi.org/10.1021/ac010526h

Cited by

  1. Recent developments of thiacalixarene based molecular motifs vol.43, pp.13, 2014, https://doi.org/10.1039/c4cs00068d
  2. Advances and trends in ionophore-based chemical sensors vol.84, pp.6, 2015, https://doi.org/10.1070/RCR4506
  3. Recommendations for Nomenclature of ION-Selective Electrodes vol.48, pp.1, 2012, https://doi.org/10.1351/pac197648010127