DOI QR코드

DOI QR Code

Capillary Electrochromatography with Liquid Crystal Crown Ether Modified Hybrid Silica Monolith for Analysis of Imidacloprid and Carbendazim in Tomatoes

  • Wang, Mingming (College of Science, Huazhong Agricultural University) ;
  • Feng, Rui (College of Science, Huazhong Agricultural University) ;
  • Shen, Jing (Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences) ;
  • Chen, Hao (College of Science, Huazhong Agricultural University) ;
  • Zeng, Zhaorui (Department of Chemistry, Wuhan University)
  • Received : 2011.12.30
  • Accepted : 2012.04.02
  • Published : 2012.07.20

Abstract

This study describes the ability of capillary electrochromatography (CEC) for the determination of imidacloprid and carbendazim in tomato samples. A novel liquid crystal crown ether modified hybrid silica monolithic column was synthesized, characterized and developed as separation column for the first time. Baseline separation of imidacloprid and carbendazim could be achieved using a mobile phase containing 90% (v/v) 20 mmol/L phosphate buffer (pH 7.0) and 10% (v/v) acetonitrile. The matrix matched calibration curves were linear with correlation coefficient $r^2$ > 0.9998 in the range of 0.20-10.00 mg/L. The limits of detection for imidacloprid and carbendazim were 0.061 and 0.15 mg/kg, respectively, which were below the maximum residue limits established by the European Union as well as Codex Alimentarius. Average recoveries for imidacloprid and carbendazim varied from 101.6-108.0% with relative standard deviations lower than 6.3%. This method was applied to the analysis of tomatoes collected from local markets.

Keywords

References

  1. EU pesticides database (2011) EU, Brussels. http://ec.europa.eu/ sanco_pesticides/public/index.cfm?event=activesubstance.selection. Accessed 25 Dec 2011
  2. Pesticide Residues in Food (2011) Codex Alimentarius, Roma. http://www.codexalimentarius.net/mrls/pestdes/jsp/pest_q-e.jsp. Accessed 25 Dec 2011
  3. Fernandez-Alba, A. R.; Tejedor, A.; Agüera, A.; Contreras, M.; Garrido, J. J. AOAC Int. 2000, 83, 748.
  4. Ferrer, I.; García-Reyes, J. F.; Mezcua, M.; Thurman, E. M.; Fernández-Alba, A. R. J. Chromatogr. A 2005, 1082, 81. https://doi.org/10.1016/j.chroma.2005.03.040
  5. Singh, S. B.; Foster, G. D.; Khan, S. U. J. Agric. Food Chem. 2004, 52, 105. https://doi.org/10.1021/jf030358p
  6. Pan, J.; Xia, X.; Liang, J. Ultrason. Sonochem. 2008, 15, 25. https://doi.org/10.1016/j.ultsonch.2007.06.005
  7. Rodriguez, R.; Boyer, I.; Font, G.; Pico, Y. Analyst 2001, 126, 2134. https://doi.org/10.1039/b106478a
  8. Eeltink, S.; Kok, W. T. Electrophoresis 2006, 27, 84. https://doi.org/10.1002/elps.200500552
  9. Rossi, A. D.; Desiderio, C. Chromatographia 2005, 61, 271. https://doi.org/10.1365/s10337-005-0517-8
  10. Ye, F.; Xie, Z.; Wu, X.; Lin, X. Talanta 2006, 69, 97. https://doi.org/10.1016/j.talanta.2005.09.006
  11. Wu, X.; Wang, L.; Xie, Z.; Lu, J.; Yan, C.; Yang, P.; Chen, G. Electrophoresis 2006, 27, 768. https://doi.org/10.1002/elps.200500615
  12. Cacho, C.; Schweitz, L.; Turiel, E.; Perez-Conde, C. J. Chromatogr. A 2008, 1179, 216. https://doi.org/10.1016/j.chroma.2007.11.097
  13. Wu, W.; Wu, Y.; Zheng, M.; Yang, L.; Wu, X.; Lin, X.; Xie, Z. Analyst 2010, 135, 2150. https://doi.org/10.1039/c0an00101e
  14. Peters, E. C.; Petro, M.; Svec, F.; Fréchet, J. M. J. Anal. Chem. 1998, 70, 2288. https://doi.org/10.1021/ac9713518
  15. Svec, F. J. Chromatogr. A 2010, 1217, 902. https://doi.org/10.1016/j.chroma.2009.09.073
  16. Dulay, M. T.; Kulkarni, R. P.; Zare, R. N. Anal. Chem. 1998, 70, 5103. https://doi.org/10.1021/ac9806456
  17. Guiochon, G. J. Chromatogr. A 2007, 1168, 101. https://doi.org/10.1016/j.chroma.2007.05.090
  18. Nunez, O.; Nakanishi, K.; Tanaka, N. J. Chromatogr. A 2008, 1191, 231. https://doi.org/10.1016/j.chroma.2008.02.029
  19. Tian, Y.; Zhang, L.; Zeng, Z.; Li, H. Electrophoresis 2008, 29, 960. https://doi.org/10.1002/elps.200700471
  20. Li, L.; Colón, L. A. J. Sep. Sci. 2009, 32, 2737. https://doi.org/10.1002/jssc.200900147
  21. Hu, J.; Li, X.; Cai, Y.; Han, H. J. Sep. Sci. 2009, 32, 2759. https://doi.org/10.1002/jssc.200800751
  22. Roux, R.; Jaoudé, M. A.; Demesmay, C. J. Chromatogr. A 2009, 1216, 3857. https://doi.org/10.1016/j.chroma.2009.02.070
  23. Sun, L.; Ma, J.; Qiao, X.; Liang, Y.; Zhu, G.; Shan, Y.; Liang, Z.; Zhang, L.; Zhang, Y. Anal. Chem. 2010, 82, 2574. https://doi.org/10.1021/ac902835p
  24. Feng, R.; Tian, Y.; Chen, H.; Huang, Z.; Zeng, Z. Electrophoresis 2010, 31, 1975. https://doi.org/10.1002/elps.200900627
  25. Chen, Y.; Huang, Z. Chem. J. Chin. Univ.-Chin. 1995, 16, 553.
  26. Tian, Y.; Yang, F.; Yang, X.; Fu, E.; Xu, Y.; Zeng, Z. Electrophoresis 2008, 29, 2293. https://doi.org/10.1002/elps.200700766
  27. Wilkowska, A.; Biziuk, M. Food Chem. 2011, 125, 803. https://doi.org/10.1016/j.foodchem.2010.09.094

Cited by

  1. Detection of Carbendazim Residues in Aqueous Samples by Fluorescent Quenching of Plant Esterase vol.85, pp.3, 2018, https://doi.org/10.1007/s10812-018-0684-7
  2. A Highly Sensitive Carbendazim Sensor Based on Electrochemically Reduced Graphene Oxide vol.82, pp.12, 2012, https://doi.org/10.5796/electrochemistry.82.1061
  3. Recent development of hybrid organic‐silica monolithic columns in CEC and capillary LC vol.36, pp.1, 2012, https://doi.org/10.1002/elps.201400316