DOI QR코드

DOI QR Code

Covalent Immobilization of Trypsin on a Novel Aldehyde-Terminated PAMAM Dendrimer

  • Hamidi, Aliasghar (Drug Applied Research Center, Tabriz University of Medical Sciences) ;
  • Rashidi, Mohammad R. (Drug Applied Research Center, Tabriz University of Medical Sciences) ;
  • Asgari, Davoud (Drug Applied Research Center, Tabriz University of Medical Sciences) ;
  • Aghanejad, Ayuob (Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences) ;
  • Davaran, Soodabeh (Drug Applied Research Center, Tabriz University of Medical Sciences)
  • Received : 2012.02.01
  • Accepted : 2012.03.28
  • Published : 2012.07.20

Abstract

Dendrimers are a novel class of nonlinear polymers and due to their extensive applications in different fields, called versatile polymers. Polyamidoamine (PAMAM) dendrimers are one of the most important dendrimers that have many applications in nanobiotechnology and industry. Generally aldehyde terminated dendrimers are prepared by activation of amine terminated dendrimers by glutaraldehyde which has two problems, toxicity and possibility of crosslink formation. In this study, novel aldehyde-terminated PAMAM dendrimer was prepared and used for covalent immobilization of trypsin by the aim of finding a special reagent which can prevent crosslinking and deactivation of the enzyme. For this purpose aminoacetaldehydedimethylacetal (AADA) was used as spacer group between aldehyde-terminated PAMAM and trypsin.The findings of this study showed that immobilization of trypsin not only resulted higher optimal temperature, but also increased the thermal stability of the immobilized enzyme in comparison to the free enzyme.

Keywords

References

  1. Klajnert, B.; Bryszewska, M. Acta Biochimica Polonica. 2001, 48, 199.
  2. Gaertner, H. F.; Cerini, F.; Kamath, A.; Rochat, A.-F.; Siegrist, CA.; Menin, L. et al. Bioconjugate Chemistry 2011, 22, 1103. https://doi.org/10.1021/bc1005653
  3. Tao, L.; Geng, J.; Chen, G.; Xu, Y.; Ladmiral, V.; Mantovani, G. et al. Chemical Communications 2007, 3441.
  4. Mhaske, S.; Kadam, P. G.; Matunga, M. International Journal of Applied Engineering Research; Dindigul 2010.
  5. Nanjwade, B. K.; Bechra, H. M.; Derkar, G. K.; Manvi, F. V.; Nanjwade, V. K. European Journal of Pharmaceutical Sciences 2009, 38, 185. https://doi.org/10.1016/j.ejps.2009.07.008
  6. Gillies, E.; Frechet, J. Drug Discovery Today 2005, 10, 35. https://doi.org/10.1016/S1359-6446(04)03276-3
  7. Endo, K.; Ito, Y.; Higashihara, T.; Ueda, M. European Polymer Journal 2009, 45, 1994. https://doi.org/10.1016/j.eurpolymj.2009.04.013
  8. Cheng, Y.; Li, M.; Xu, T. European Journal of Medicinal Chemistry 2008, 43, 1791. https://doi.org/10.1016/j.ejmech.2007.09.030
  9. Cheng, Y.; Qu, H.; Ma, M.; Xu, Z.; Xu, P.; Fang, Y. et al. European Journal of Medicinal Chemistry 2007, 42, 1032. https://doi.org/10.1016/j.ejmech.2006.12.035
  10. Biricova, V.; Laznickova, A. Bioorganic Chemistry 2009, 37, 185. https://doi.org/10.1016/j.bioorg.2009.07.006
  11. Cloninger, M. J. Current Opinion in Chemical Biology 2002, 6, 742. https://doi.org/10.1016/S1367-5931(02)00400-3
  12. Ma, M.; Cheng, Y.; Xu, Z.; Xu, P.; Qu, H.; Fang, Y. et al. European Journal of Medicinal Chemistry 2007, 42, 93. https://doi.org/10.1016/j.ejmech.2006.07.015
  13. Dutta, T.; Jain, N. K.; McMillan, N. A. J.; Parekh, H. S. Nanomedicine: Nanotechnology, Biology and Medicine 2010, 6, 25.
  14. Gupta, U.; Agashe, H. B.; Asthana, A.; Jain, N. K. Nanomedicine: Nanotechnology, Biology and Medicine 2006, 2, 66. https://doi.org/10.1016/j.nano.2006.04.002
  15. Yang, W.; Cheng, Y.; Xu, T.; Wang, X.; Wen, L.-P. European Journal of Medicinal Chemistry 2009, 44, 862. https://doi.org/10.1016/j.ejmech.2008.04.021
  16. Demanuele, A.; Attwood, D. Advanced Drug Delivery Reviews 2005, 57, 2147. https://doi.org/10.1016/j.addr.2005.09.012
  17. Uehara, T.; Ishii, D.; Uemura, T.; Suzuki, H.; Kanei, T.; Takagi, K. et al. Bioconjugate Chemistry 2010, 21, 175. https://doi.org/10.1021/bc900410q
  18. Kurtoglu, Y. E.; Mishra, M. K.; Kannan, S.; Kannan, R. M. International Journal of Pharmaceutics 2010, 384, 189. https://doi.org/10.1016/j.ijpharm.2009.10.017
  19. Lutz, J.-F.; Borner, H. G. Progress in Polymer Science 2008, 33, 1. https://doi.org/10.1016/j.progpolymsci.2007.07.005
  20. Hamerska-Dudra, A.; Bryjak, J.; Trochimczuk, A. W. Enzyme and Microbial Technology 2007, 41, 197. https://doi.org/10.1016/j.enzmictec.2007.01.008
  21. Blanco, R. M.; Calvete, J. J.; Guisan, J. M. Enzyme and Microbial Technology 1989, 11, 353. https://doi.org/10.1016/0141-0229(89)90019-7
  22. Fernandez-Lafuente, R.; Rodriguez, V.; Mateo, C.; Penzol, G.; Hernandez-Justiz, O.; Irazoqui, G. et al. Journal of Molecular Catalysis - B Enzymatic 1999, 7, 181. https://doi.org/10.1016/S1381-1177(99)00028-4
  23. Fréchet, J. M. J.; Tomalia, D. A. Laboratory Synthesis of Poly(amidoamine) (PAMAM) Dendrimers Dendrimers and Other Dendritic Polymers; 2001; p 587.
  24. Ibrahim, K. S. Journal of Microbiology and Biotechnology 2011, 21, 20. https://doi.org/10.4014/jmb.1009.09001
  25. Wati, M. R.; Thanabalu, T.; Porter, A. G. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1997, 1352, 56. https://doi.org/10.1016/S0167-4781(97)00023-7
  26. Nouaimi, M.; Moschel, K.; Bisswanger, H. Enzyme and Microbial Technology 2001, 29, 567. https://doi.org/10.1016/S0141-0229(01)00429-X
  27. Lopez, J.; Imperial, S.; Valderrama, R.; Navarro, S. Clinica Chimica Acta 1993, 220, 91. https://doi.org/10.1016/0009-8981(93)90009-S
  28. de Miguel Bouzas, T.; Barros-Velazquez, J.; Gonzalez Villa, T. Protein and Peptide Letters 2006, 13, 645. https://doi.org/10.2174/092986606777790548
  29. Amini, K. A. K.; Mohammad-Hossein Sorouraddin, M. H. S.; Mohammad-Reza Rashidi, M. R. R. Canadian Journal of Chemistry 2010, 89, 1.
  30. Chang, M.-Y.; Juang, R.-S. Enzyme and Microbial Technology 2005, 36, 75. https://doi.org/10.1016/j.enzmictec.2004.06.013
  31. Akkus Cetinus, S.; Nursevin Oztop, H. Enzyme and Microbial Technology 2003, 32, 889. https://doi.org/10.1016/S0141-0229(03)00065-6
  32. Chellapandian, M. Process Biochemistry 1998, 33, 169. https://doi.org/10.1016/S0032-9592(97)00043-5

Cited by

  1. Self-templated chemically stable hollow spherical covalent organic framework vol.6, pp.2041-1723, 2015, https://doi.org/10.1038/ncomms7786
  2. Laccase-immobilized dendritic nanofibrous membranes as a novel approach towards the removal of bisphenol A vol.39, pp.3, 2018, https://doi.org/10.1080/09593330.2017.1301570
  3. Mucin-1 aptamer-armed superparamagnetic iron oxide nanoparticles for targeted delivery of doxorubicin to breast cancer cells vol.8, pp.2, 2012, https://doi.org/10.15171/bi.2018.14