DOI QR코드

DOI QR Code

Sample Preparation and Stability of Human Serum and Urine Based on HPLC-DAD for Metabonomics Studies

  • Liu, Yun (Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics) ;
  • Sun, Xiaoming (Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics) ;
  • Di, Duolong (Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics) ;
  • Feng, Yuxiang (Gansu Province Hospital of Traditional Chinese Medicine) ;
  • Jin, Fengling (The First Affiliated Hospital of Lanzhou University)
  • Received : 2011.11.17
  • Accepted : 2012.03.26
  • Published : 2012.07.20

Abstract

Many literatures focus on the biological relevance and the identification of biomarkers for disease activity assessment while less attention has been paid to the development of standard procedures for sample preparation and storage based on liquid chromatography technique. The influencing factors including protein precipitation, storage temperature, storage time, and reconstitution by ultra pure water were analyzed employing HPLC-DAD. The effects were investigated from five participants over three months by principal components analysis (PCA) and the values of percent changes (PC). The samples with protein precipitation might slow the rate of bacterial enzymatic conversion. After protein precipitation, the average PC of urine samples ($0.136{\pm}0.013$, n = 5) is relatively less than that of the serum samples ($0.173{\pm}0.026$, n = 5) for three months. Minimal effects on metabolic profiles of serum and urine (PC < 0.15) are reasonable for metabolomic studies after protein precipitation and storage at $-20^{\circ}C$ for two months.

Keywords

References

  1. Nicholson, J. K.; Homes E.; Lindon, J. C.; Wilson, I. D. Nat. Biotechnol. 2004, 22, 1268. https://doi.org/10.1038/nbt1015
  2. Dai, H.; Xiao, C. N.; Liu, H. B.; Hao, F. H.; Tang, H. R. J. Proteome Res. 2010, 9, 1565. https://doi.org/10.1021/pr901045c
  3. Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass Spectrom. Rev. 2007, 26, 51. https://doi.org/10.1002/mas.20108
  4. Karakach, T. K.; Wentzell, P. D.; Walter, J. A. Anal. Chim. Acta 2009, 636, 163. https://doi.org/10.1016/j.aca.2009.01.048
  5. Dowlatabadi, R.; Weljie, A. M.; Thorpe, T. A.; Yeung, E. C.; Vogel, H. J. Plant Physiol. Bioch. 2009, 47, 343. https://doi.org/10.1016/j.plaphy.2008.12.023
  6. Roux, A.; Lison, D.; Junot, C.; Heilier, J. F. Clin. Biochem. 2011, 44, 119. https://doi.org/10.1016/j.clinbiochem.2010.08.016
  7. Wilson, I. D.; Plumb, R.; Granger, J.; Major, H.; Williams, R.; Lenz, E. M. J. Chromatogr. B 2005, 817, 67. https://doi.org/10.1016/j.jchromb.2004.07.045
  8. Berkov, S.; Bastida, J.; Viladomat, F.; Codina, C. Talanta 2011, 83, 1455. https://doi.org/10.1016/j.talanta.2010.11.029
  9. Spagou, K.; Theddoridis, G.; Wilson, I.; Raikos, N.; Greaves, P.; Edwards, R.; Nolan, B.; Klapa, M. I. J. Chromatogr. B 2011, 879, 1467. https://doi.org/10.1016/j.jchromb.2011.01.028
  10. Tuan, H. P.; Kaskavelis, L.; Daykin, C. A.; Janssen, H. G. J. Chromatogr. B 2003, 789, 283. https://doi.org/10.1016/S1570-0232(03)00077-1
  11. Yang, J.; Xu, G. W.; Zheng, Y. F.; Kong, H. W.; Pang, T.; Lv, S.; Yang, Q. J. Chromatogr. B 2004, 813, 59. https://doi.org/10.1016/j.jchromb.2004.09.032
  12. Fan, X. H.; Ba, J. Q.; Shen, P. Eng. Med. Boil. 2005, 6, 6081.
  13. Sabatine, M. S.; Liu, E.; Morrow, D. A.; Heller, E.; McCarroll, R.; Wiegand, R.; Berriz, G. F.; Roth, F. P.; Gerszten, R. E. Circulation 2005, 112, 3868. https://doi.org/10.1161/CIRCULATIONAHA.105.569137
  14. Meleh, M.; Pozlep, B.; Mlakar, A.; Meden-Vrtovec, H.; Zupanèiè- Kralj, L. J. Chromatogr. B 2007, 858, 287. https://doi.org/10.1016/j.jchromb.2007.08.008
  15. Issaq, H. J.; Nativ, O.; Waybright, T.; Luke, B.; Veenstra, T. D.; Issaq, E. J.; Kravstov, A.; Mullerad, M. J. Urology 2008, 179, 2422. https://doi.org/10.1016/j.juro.2008.01.084
  16. Lindon, J. C.; Holmes, E.; Bollard, M. E.; Stanley, E. G.; Nicholson, J. K. Biomarkers 2004, 9, 1. https://doi.org/10.1080/13547500410001668379
  17. Weckwerth, W.; Morgenthal, K. Drug Discov. Today 2005, 10, 1551. https://doi.org/10.1016/S1359-6446(05)03609-3
  18. Burns, M. A.; He, W.; Wu, C. L.; Cheng, L. L. Technol. Cancer Res. T. 2004, 3, 591. https://doi.org/10.1177/153303460400300609
  19. Watkins, S. M.; Reifsnyder, P. R.; Pan, H. J.; German, J. B.; Leiter, E. H. J. Lipid Res. 2002, 43,1809. https://doi.org/10.1194/jlr.M200169-JLR200
  20. Stentiford, G. D.; Viant, M. R.; Ward, D. G.; Johnson, P. J.; Martin, A.; Wenbin, W.; Cooper, H. J.; Lyons, B. P.; Feist, S. W. Omics 2005, 9, 281. https://doi.org/10.1089/omi.2005.9.281
  21. Coen, M.; O'Sullivan, M.; Bubb, W. A.; Kuchel, P. W.; Sorrell, T. Clin. Infect. Dis. 2005, 41, 1582. https://doi.org/10.1086/497836
  22. Maher, A. D.; Zirah, S. M.; Holmes, E.; Nicholson, J. K. Anal. Chem. 2007, 79, 5204. https://doi.org/10.1021/ac070212f
  23. Anderson, N. L.; Anderson, N. G. Mol. Cell Proteomics 2002, 1, 845. https://doi.org/10.1074/mcp.R200007-MCP200
  24. Maher, A. D.; Zirah, S. M.; Holmes, E.; Nicholson, J. K. Anal. Chem. 2007, 79, 5204. https://doi.org/10.1021/ac070212f
  25. Saude, E. J.; Adamko, D.; Rowe, B. H.; Marrie, T.; Sykes, B. D. Metabolomics 2007, 3, 19. https://doi.org/10.1007/s11306-006-0042-2
  26. Lauridsen, M.; Hansen, S. H.; Jaroszewski, J. W.; Cornett, C. Anal. Chem. 2007, 79, 1181. https://doi.org/10.1021/ac061354x
  27. Want, E. J.; O'Maille, G.; Smith, C. A.; Brandon, T. R.; Uritboonthai, W.; Qin, C.; Trauger, S. A.; Siuzdak, G. Anal. Chem. 2006, 78, 743. https://doi.org/10.1021/ac051312t
  28. Gika, H. G.; Theodoridis, G. A.; Wilson, I. D. J. Chromatogr. A 2008, 1189, 314. https://doi.org/10.1016/j.chroma.2007.10.066
  29. Cattell, W. R.; Sardeson, J. M.; Hutchinson, E.; O'grady, F. Brit. Med. J. 1969, 3, 175.
  30. Peddie, B. A.; Chambers, S. T.; Lever, M. J. Lab. Clin. Med. 1996, 128, 417. https://doi.org/10.1016/S0022-2143(96)80014-X
  31. Stemina, M. A.; Voevodin, D. A.; Stakhanov, V. D.; Kisilevich, O. N.; Rozanova, G. N. Bull. Exp. Biol. Med. 2003, 135, 178. https://doi.org/10.1023/A:1023884201722

Cited by

  1. Analyses of acute kidney injury biomarkers by ultra-high performance liquid chromatography with mass spectrometry vol.39, pp.1, 2015, https://doi.org/10.1002/jssc.201500982