참고문헌
- Clark, J. H.; Rhodes, C. N. Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents; Royal Society of Chemistry: Cambridge, 2000.
- Gerard, V. S.; Notheisz, F. Heterogeneous Catalysis in Organic Chemistry; Elsevier: San Diego, Calif, 2000.
- Climent, M. J.; Corma, A.; Iborra, S. Chem. Rev. 2011, 111, 1072. https://doi.org/10.1021/cr1002084
- Wilson, K.; Clark, J. H. Pure Appl. Chem. 2000, 72, 1313. https://doi.org/10.1351/pac200072071313
- Davoodnia, A.; Tavakoli-Nishaburi, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 635. https://doi.org/10.5012/bkcs.2011.32.2.635
- Phan, N. T. S.; Khan, J.; Styring, P. Tetrahedron 2005, 61, 12065. https://doi.org/10.1016/j.tet.2005.07.109
- Alvaro, M.; Baleizao, C.; Carbonell, E.; Ghoul, M. E.; Garcia, H.; Gigante, B. Tetrahedron 2005, 61, 12131. https://doi.org/10.1016/j.tet.2005.07.114
- Itsuno, S. J. Synth. Org. Chem. 2009, 67, 1025. https://doi.org/10.5059/yukigoseikyokaishi.67.1025
- Maurya, M. R. J. Chem. Sci. 2011, 123, 215. https://doi.org/10.1007/s12039-011-0114-3
- Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772. https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
- Welton, T. Chem. Rev. 1999, 99, 2071. https://doi.org/10.1021/cr980032t
- Wasserscheid, P.; Keim, W. Angew Chem., Int. Ed. 2000, 39, 3773.
- Liu, L.; Liu, Y.; Cai, Y. Chin. J. Catal. 2008, 29, 341.
- Li, X. H.; Zheng, B. G.; Zhao, J. G. Chin. J. Catal. 2006, 27, 106.
- Yadav, L. D. S.; Awasthi, C. Tetrahedron Lett. 2009, 50, 3801. https://doi.org/10.1016/j.tetlet.2009.04.030
- Verma, A. K.; Attri, P.; Chopra, V.; Tiwari, R. K.; Chandra, R. Monatsh. Chem. 2008, 139, 1041. https://doi.org/10.1007/s00706-008-0886-4
- Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli- Hoseini, N. Monatsh. Chem. 2009, 140, 1499. https://doi.org/10.1007/s00706-009-0193-8
- Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli- Hoseini, N. Chin. Chem. Lett. 2010, 21, 1. https://doi.org/10.1016/j.cclet.2009.09.002
- Davoodnia, A.; Heravi, M. M.; Safavi-Rad, Z.; Tavakoli-Hoseini, N. Synth. Commun. 2010, 40, 2588. https://doi.org/10.1080/00397910903289271
- Li, X. H.; Geng, W. G.; Zhou, J. X.; Luo, W.; Wang, F. R.; Wang, L. F.; Tsang, S. C. New. J. Chem. 2007, 31, 2088. https://doi.org/10.1039/b702573d
- Yoshizawa-Fujita, M.; Johansson, K.; Newman, P.; MacFarlane, D. R.; Forsyth, M. Tetrahedron Lett 2006, 47, 2755. https://doi.org/10.1016/j.tetlet.2006.02.073
- Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C.; James, J.; Davis, H. J. Am. Chem. Soc. 2002, 124, 5962. https://doi.org/10.1021/ja026290w
- Qiao, K.; Yokoyama, C. Catal. Commun. 2006, 7, 450. https://doi.org/10.1016/j.catcom.2005.12.009
- Wasserscheid, P.; Sesing, M.; Korth, W. Green Chem. 2002, 4, 134. https://doi.org/10.1039/b109845b
- Zhao, D. B.; Wu, M.; Kou, Y.; Min, E. Z. Catal. Today 2002, 74, 157. https://doi.org/10.1016/S0920-5861(01)00541-7
- Sasaki, T.; Zhong, C.; Tada, M.; Iwasawa, Y. Chem. Commun. 2005, 2506.
- DeCastro, C.; Sauvage, E.; Valkenberg, M. H.; Holderich, W. F. J. Catal. 2000, 196, 86. https://doi.org/10.1006/jcat.2000.3004
- Valkenberg, M. H.; DeCastro, C.; Holderich, W. F. Top. Catal. 2001, 14, 139.
- Kumar, P.; Vermeiren, W.; Dath, J. P.; Holderich, W. F. Appl. Catal. A 2006, 304, 131. https://doi.org/10.1016/j.apcata.2006.02.030
- Khadilkar, B.; Borkar, S. Synth. Commun.1998, 28, 207. https://doi.org/10.1080/00397919808005712
- Vo, D.; Matowe, W. C.; Ramesh, M.; Iqbal, N.; Wolowyk, M. W.; Howlett, S. E.; Knaus, E. E. J. Med. Chem. 1995, 38, 2851. https://doi.org/10.1021/jm00015a007
- Guengerich, F. P.; Martin, M. V.; Beaune, P. H.; Kremers, P.; Wolff, T.; Waxman, D. J. J. Biol. Chem. 1986, 261, 5051.
- Kuraitheerthakumaran, A.; Pazhamalai, S.; Gopalakrishnan, M.Chin. Chem. Lett. 2011, 22, 1199.
- Heydari, A.; Khaksar, S.; Tajbakhsh, M.; Bijanzadeh, H. R. J. Fluorine Chem. 2009, 130, 609. https://doi.org/10.1016/j.jfluchem.2009.03.014
- Sharma, G. V. M.; Reddy, K. L.; Lakshmi, P. S.; Krishna, P. R. Synthesis 2006, 1, 0055.
- Debache, A.; Ghalem, W.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. Tetrahedron Lett. 2009, 50, 5248. https://doi.org/10.1016/j.tetlet.2009.07.018
- Donelson, J. L.; Gibbs, R. A.; De, S. K. J. Mol. Catal. A: Chem. 2006, 256, 309. https://doi.org/10.1016/j.molcata.2006.03.079
- Sabitha, G.; Arundhathi, K.; Sudhakar, K.; Sastry, B. S.; Yadav, J. S. Synth. Commun. 2009, 39, 2843. https://doi.org/10.1080/00397910802656091
- Sugimura, R.; Qiao, K.; Tomida, D.; Yokoyama, C. Catal. Commun. 2007, 8, 770. https://doi.org/10.1016/j.catcom.2006.08.049
- Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli- Hoseini, N. Monatsh. Chem. 2010, 141, 867. https://doi.org/10.1007/s00706-010-0329-x
- Davoodnia, A.; Tavakoli-Nishaburi, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 635. https://doi.org/10.5012/bkcs.2011.32.2.635
- Emrani A.; Davoodnia, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 2385. https://doi.org/10.5012/bkcs.2011.32.7.2385
- Davoodnia, A.; Khojastehnezhad, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 2243. https://doi.org/10.5012/bkcs.2011.32.7.2243
- Norouzi H.; Davoodnia, A.; Bakavoli, M.; Zeinali-Dastmalbaf M.; Tavakoli-Hoseini, N.; Ebrahimi, M. Bull. Korean Chem. Soc. 2011, 32, 2311. https://doi.org/10.5012/bkcs.2011.32.7.2311
- Khojastehnezhad, A.; Davoodnia, A.; Bakavoli, M.; Tavakoli-Hoseini, N.; Zeinali-Dastmalbaf, M. Chin. J. Chem. 2011, 29, 297. https://doi.org/10.1002/cjoc.201190081
- Davoodnia, A. Bull. Korean Chem. Soc. 2011, 32, 4286. https://doi.org/10.5012/bkcs.2011.32.12.4286
- Zare-Bidaki, A.; Davoodnia, A. Bull. Korean Chem. Soc. 2012, in press.
피인용 문헌
- Dual Acidic Ionic Liquid Immobilized on α-Fe2O3–MCM-41 Magnetic Mesoporous Materials as the Hybrid Acidic Nanocatalyst for the Synthesis of Pyrimido[4,5-d]pyrimidine Derivatives vol.144, pp.10, 2014, https://doi.org/10.1007/s10562-014-1330-5
- The Use of Supported Acidic Ionic Liquids in Organic Synthesis vol.19, pp.7, 2014, https://doi.org/10.3390/molecules19078840
- Lewis acidic mesoporous Fe-TUD-1 as catalysts for synthesis of Hantzsch 1,4-dihydropyridine derivatives vol.22, pp.5, 2015, https://doi.org/10.1007/s10934-015-9995-8
- Acidic Ionic Liquids vol.116, pp.10, 2016, https://doi.org/10.1021/acs.chemrev.5b00763
- Contemporary development in sequential Knoevenagel, Michael addition multicomponent reaction for the synthesis of 4-Aryl-5-oxo-5H-indeno[1,2-b]pyridine-3-carbonitrile vol.42, pp.4, 2016, https://doi.org/10.1007/s11164-015-2187-y
- ZnO Nanoparticle-Catalyzed Multicomponent Reaction for the Synthesis of 1,4-Diaryl Dihydropyridines vol.49, pp.3, 2017, https://doi.org/10.1080/00304948.2017.1320927
- Acid-ionic polymer as recyclable catalyst for one-pot three-component Mannich reaction vol.7, pp.48, 2017, https://doi.org/10.1039/C7RA04834C
- Comparative Study of Catalytic Potential of TBAB, BTEAC, and CTAB in One-Pot Synthesis of 1,4-Dihydropyridines Under Aqueous Medium vol.44, pp.4, 2012, https://doi.org/10.1080/00397911.2013.825807
- Synergistic catalytic effect between ultrasound waves and pyrimidine-2,4-diamine-functionalized magnetic nanoparticles: Applied for synthesis of 1,4-dihydropyridine pharmaceutical derivatives vol.59, pp.None, 2012, https://doi.org/10.1016/j.ultsonch.2019.104737
- Recent Advances in Applications of Supported Ionic Liquids vol.23, pp.26, 2012, https://doi.org/10.2174/1385272823666191204151803
- Exploring the Potential of Supported Ionic Liquids as Building Block Systems in Catalysis vol.5, pp.39, 2020, https://doi.org/10.1002/slct.202002826
- Boosting the catalytic performance of manganese (III)‐porphyrin complex MnTSPP for facile one‐pot green synthesis of 1,4‐dihydropyridine derivatives under mild conditions vol.35, pp.7, 2021, https://doi.org/10.1002/aoc.6238