DOI QR코드

DOI QR Code

Polymer Support Immobilized Acidic Ionic Liquid: Preparation and Its Application as Catalyst in the Synthesis of Hantzsch 1,4-Dihydropyridines

  • 투고 : 2012.01.23
  • 심사 : 2012.03.25
  • 발행 : 2012.07.20

초록

A polymer support immobilized acidic ionic liquid was prepared by copolymerization of 3-vinyl-1-(4-sulfonic acid)butylimidazolium hydrogen sulfate with styrene in the presence of benzoyl peroxide and its primary application as a solid acidic heterogeneous catalyst to the synthesis of Hantzsch 1,4-dihydropyridines through a one-pot three-component reaction of aromatic aldehydes, ethyl acetoacetate and ammonium acetate was investigated. The results showed that this heterogeneous catalyst has high catalytic activity and the desired products were obtained in good to high yields. Moreover, the catalyst was found to be reusable and a considerable catalytic activity still could be achieved after third run.

키워드

참고문헌

  1. Clark, J. H.; Rhodes, C. N. Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents; Royal Society of Chemistry: Cambridge, 2000.
  2. Gerard, V. S.; Notheisz, F. Heterogeneous Catalysis in Organic Chemistry; Elsevier: San Diego, Calif, 2000.
  3. Climent, M. J.; Corma, A.; Iborra, S. Chem. Rev. 2011, 111, 1072. https://doi.org/10.1021/cr1002084
  4. Wilson, K.; Clark, J. H. Pure Appl. Chem. 2000, 72, 1313. https://doi.org/10.1351/pac200072071313
  5. Davoodnia, A.; Tavakoli-Nishaburi, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 635. https://doi.org/10.5012/bkcs.2011.32.2.635
  6. Phan, N. T. S.; Khan, J.; Styring, P. Tetrahedron 2005, 61, 12065. https://doi.org/10.1016/j.tet.2005.07.109
  7. Alvaro, M.; Baleizao, C.; Carbonell, E.; Ghoul, M. E.; Garcia, H.; Gigante, B. Tetrahedron 2005, 61, 12131. https://doi.org/10.1016/j.tet.2005.07.114
  8. Itsuno, S. J. Synth. Org. Chem. 2009, 67, 1025. https://doi.org/10.5059/yukigoseikyokaishi.67.1025
  9. Maurya, M. R. J. Chem. Sci. 2011, 123, 215. https://doi.org/10.1007/s12039-011-0114-3
  10. Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772. https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
  11. Welton, T. Chem. Rev. 1999, 99, 2071. https://doi.org/10.1021/cr980032t
  12. Wasserscheid, P.; Keim, W. Angew Chem., Int. Ed. 2000, 39, 3773.
  13. Liu, L.; Liu, Y.; Cai, Y. Chin. J. Catal. 2008, 29, 341.
  14. Li, X. H.; Zheng, B. G.; Zhao, J. G. Chin. J. Catal. 2006, 27, 106.
  15. Yadav, L. D. S.; Awasthi, C. Tetrahedron Lett. 2009, 50, 3801. https://doi.org/10.1016/j.tetlet.2009.04.030
  16. Verma, A. K.; Attri, P.; Chopra, V.; Tiwari, R. K.; Chandra, R. Monatsh. Chem. 2008, 139, 1041. https://doi.org/10.1007/s00706-008-0886-4
  17. Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli- Hoseini, N. Monatsh. Chem. 2009, 140, 1499. https://doi.org/10.1007/s00706-009-0193-8
  18. Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli- Hoseini, N. Chin. Chem. Lett. 2010, 21, 1. https://doi.org/10.1016/j.cclet.2009.09.002
  19. Davoodnia, A.; Heravi, M. M.; Safavi-Rad, Z.; Tavakoli-Hoseini, N. Synth. Commun. 2010, 40, 2588. https://doi.org/10.1080/00397910903289271
  20. Li, X. H.; Geng, W. G.; Zhou, J. X.; Luo, W.; Wang, F. R.; Wang, L. F.; Tsang, S. C. New. J. Chem. 2007, 31, 2088. https://doi.org/10.1039/b702573d
  21. Yoshizawa-Fujita, M.; Johansson, K.; Newman, P.; MacFarlane, D. R.; Forsyth, M. Tetrahedron Lett 2006, 47, 2755. https://doi.org/10.1016/j.tetlet.2006.02.073
  22. Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C.; James, J.; Davis, H. J. Am. Chem. Soc. 2002, 124, 5962. https://doi.org/10.1021/ja026290w
  23. Qiao, K.; Yokoyama, C. Catal. Commun. 2006, 7, 450. https://doi.org/10.1016/j.catcom.2005.12.009
  24. Wasserscheid, P.; Sesing, M.; Korth, W. Green Chem. 2002, 4, 134. https://doi.org/10.1039/b109845b
  25. Zhao, D. B.; Wu, M.; Kou, Y.; Min, E. Z. Catal. Today 2002, 74, 157. https://doi.org/10.1016/S0920-5861(01)00541-7
  26. Sasaki, T.; Zhong, C.; Tada, M.; Iwasawa, Y. Chem. Commun. 2005, 2506.
  27. DeCastro, C.; Sauvage, E.; Valkenberg, M. H.; Holderich, W. F. J. Catal. 2000, 196, 86. https://doi.org/10.1006/jcat.2000.3004
  28. Valkenberg, M. H.; DeCastro, C.; Holderich, W. F. Top. Catal. 2001, 14, 139.
  29. Kumar, P.; Vermeiren, W.; Dath, J. P.; Holderich, W. F. Appl. Catal. A 2006, 304, 131. https://doi.org/10.1016/j.apcata.2006.02.030
  30. Khadilkar, B.; Borkar, S. Synth. Commun.1998, 28, 207. https://doi.org/10.1080/00397919808005712
  31. Vo, D.; Matowe, W. C.; Ramesh, M.; Iqbal, N.; Wolowyk, M. W.; Howlett, S. E.; Knaus, E. E. J. Med. Chem. 1995, 38, 2851. https://doi.org/10.1021/jm00015a007
  32. Guengerich, F. P.; Martin, M. V.; Beaune, P. H.; Kremers, P.; Wolff, T.; Waxman, D. J. J. Biol. Chem. 1986, 261, 5051.
  33. Kuraitheerthakumaran, A.; Pazhamalai, S.; Gopalakrishnan, M.Chin. Chem. Lett. 2011, 22, 1199.
  34. Heydari, A.; Khaksar, S.; Tajbakhsh, M.; Bijanzadeh, H. R. J. Fluorine Chem. 2009, 130, 609. https://doi.org/10.1016/j.jfluchem.2009.03.014
  35. Sharma, G. V. M.; Reddy, K. L.; Lakshmi, P. S.; Krishna, P. R. Synthesis 2006, 1, 0055.
  36. Debache, A.; Ghalem, W.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. Tetrahedron Lett. 2009, 50, 5248. https://doi.org/10.1016/j.tetlet.2009.07.018
  37. Donelson, J. L.; Gibbs, R. A.; De, S. K. J. Mol. Catal. A: Chem. 2006, 256, 309. https://doi.org/10.1016/j.molcata.2006.03.079
  38. Sabitha, G.; Arundhathi, K.; Sudhakar, K.; Sastry, B. S.; Yadav, J. S. Synth. Commun. 2009, 39, 2843. https://doi.org/10.1080/00397910802656091
  39. Sugimura, R.; Qiao, K.; Tomida, D.; Yokoyama, C. Catal. Commun. 2007, 8, 770. https://doi.org/10.1016/j.catcom.2006.08.049
  40. Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli- Hoseini, N. Monatsh. Chem. 2010, 141, 867. https://doi.org/10.1007/s00706-010-0329-x
  41. Davoodnia, A.; Tavakoli-Nishaburi, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 635. https://doi.org/10.5012/bkcs.2011.32.2.635
  42. Emrani A.; Davoodnia, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 2385. https://doi.org/10.5012/bkcs.2011.32.7.2385
  43. Davoodnia, A.; Khojastehnezhad, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 2243. https://doi.org/10.5012/bkcs.2011.32.7.2243
  44. Norouzi H.; Davoodnia, A.; Bakavoli, M.; Zeinali-Dastmalbaf M.; Tavakoli-Hoseini, N.; Ebrahimi, M. Bull. Korean Chem. Soc. 2011, 32, 2311. https://doi.org/10.5012/bkcs.2011.32.7.2311
  45. Khojastehnezhad, A.; Davoodnia, A.; Bakavoli, M.; Tavakoli-Hoseini, N.; Zeinali-Dastmalbaf, M. Chin. J. Chem. 2011, 29, 297. https://doi.org/10.1002/cjoc.201190081
  46. Davoodnia, A. Bull. Korean Chem. Soc. 2011, 32, 4286. https://doi.org/10.5012/bkcs.2011.32.12.4286
  47. Zare-Bidaki, A.; Davoodnia, A. Bull. Korean Chem. Soc. 2012, in press.

피인용 문헌

  1. Dual Acidic Ionic Liquid Immobilized on α-Fe2O3–MCM-41 Magnetic Mesoporous Materials as the Hybrid Acidic Nanocatalyst for the Synthesis of Pyrimido[4,5-d]pyrimidine Derivatives vol.144, pp.10, 2014, https://doi.org/10.1007/s10562-014-1330-5
  2. The Use of Supported Acidic Ionic Liquids in Organic Synthesis vol.19, pp.7, 2014, https://doi.org/10.3390/molecules19078840
  3. Lewis acidic mesoporous Fe-TUD-1 as catalysts for synthesis of Hantzsch 1,4-dihydropyridine derivatives vol.22, pp.5, 2015, https://doi.org/10.1007/s10934-015-9995-8
  4. Acidic Ionic Liquids vol.116, pp.10, 2016, https://doi.org/10.1021/acs.chemrev.5b00763
  5. Contemporary development in sequential Knoevenagel, Michael addition multicomponent reaction for the synthesis of 4-Aryl-5-oxo-5H-indeno[1,2-b]pyridine-3-carbonitrile vol.42, pp.4, 2016, https://doi.org/10.1007/s11164-015-2187-y
  6. ZnO Nanoparticle-Catalyzed Multicomponent Reaction for the Synthesis of 1,4-Diaryl Dihydropyridines vol.49, pp.3, 2017, https://doi.org/10.1080/00304948.2017.1320927
  7. Acid-ionic polymer as recyclable catalyst for one-pot three-component Mannich reaction vol.7, pp.48, 2017, https://doi.org/10.1039/C7RA04834C
  8. Comparative Study of Catalytic Potential of TBAB, BTEAC, and CTAB in One-Pot Synthesis of 1,4-Dihydropyridines Under Aqueous Medium vol.44, pp.4, 2012, https://doi.org/10.1080/00397911.2013.825807
  9. Synergistic catalytic effect between ultrasound waves and pyrimidine-2,4-diamine-functionalized magnetic nanoparticles: Applied for synthesis of 1,4-dihydropyridine pharmaceutical derivatives vol.59, pp.None, 2012, https://doi.org/10.1016/j.ultsonch.2019.104737
  10. Recent Advances in Applications of Supported Ionic Liquids vol.23, pp.26, 2012, https://doi.org/10.2174/1385272823666191204151803
  11. Exploring the Potential of Supported Ionic Liquids as Building Block Systems in Catalysis vol.5, pp.39, 2020, https://doi.org/10.1002/slct.202002826
  12. Boosting the catalytic performance of manganese (III)‐porphyrin complex MnTSPP for facile one‐pot green synthesis of 1,4‐dihydropyridine derivatives under mild conditions vol.35, pp.7, 2021, https://doi.org/10.1002/aoc.6238