DOI QR코드

DOI QR Code

A Newly Designed a TiO2-Loaded Spherical ZnS Nano/Micro-Composites for High Hydrogen Production from Methanol/Water Solution Photo-Splitting

  • Kim, Ji-Eun (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Received : 2011.10.18
  • Accepted : 2012.01.06
  • Published : 2012.07.20

Abstract

A new system using $TiO_2$ (nano-sized, band-gap 3.14 eV)-impregnated spherical ZnS (micro-sized, band-gap 2.73 eV) nano/micro-composites (Ti 0.001, 0.005, 0.01, and 0.05 mol %/ZnS) was developed to enhance the production of hydrogen from methanol/water splitting. The ZnS particles in a spherical morphology with a diameter of about 2-4 mm which can absorb around 455 nm were prepared by hydrothermal method. This material was used as a photocatalyst with loading by nano-sized $TiO_2$ (20-30 nm) for hydrogen production. The evolution of $H_2$ from methanol/water (1:1) photo splitting over the $TiO_2$/ZnS composite in the liquid system was enhanced, compared with that over pure $TiO_2$ and ZnS. In particular, 1.2 mmol of $H_2$ gas was produced after 12 h when 0.005 mol % $TiO_2$/ZnS nano/micro-composite was used. On the basis of cyclic voltammeter (CV) and UV-visible spectrums results, the high photoactivity was attributed to the larger band gap and the lower LUMO in the $TiO_2$/ZnS composite, due to the decreased recombination between the excited electrons and holes.

Keywords

References

  1. Nakamura, S.; Yamada, Y.; Taguchi, T. J. Cryst. Growth 2000, 214/215, 1091. https://doi.org/10.1016/S0022-0248(00)00280-3
  2. Liu, X.; Cai, X.; Mao, J.; Jin, C. Appl. Surf. Sci. 2001, 183, 103. https://doi.org/10.1016/S0169-4332(01)00570-0
  3. Nazerdeylami, S.; Saievar-Iranizad, E.; Dehghani, Z.; Molaei, M. Physica B 2011, 406, 108. https://doi.org/10.1016/j.physb.2010.10.033
  4. Luo, L.; Chen, H.; Zhang, L.; Xu, K.; Lv, Y. Analytica Chimica Acta 2009, 635, 183. https://doi.org/10.1016/j.aca.2009.01.020
  5. Yano, S.; Schroeder, R.; Ullrich, B.; Sakai, H. Thin Solid Films 2003, 423, 273. https://doi.org/10.1016/S0040-6090(02)01037-4
  6. Liu, Y.; Hu, J.; Ngo, C.; Prikhodko, S.; Kodambaka, S.; Li, J.; Richard, R. Appl. Catal. B: Environ. 2011, 106, 212.
  7. Franco, A.; Neves, M. C.; Ribeiro Carrott, M. M. L.; Mendonc, M. H.; Pereira, M. I.; Monteiro, O. C. J. Hazardous Mater. 2009, 161, 545. https://doi.org/10.1016/j.jhazmat.2008.03.133
  8. Kho, R.; Torres-Martínez, C. L.; Mehra, R. K. J. Colloid. Interf. Sci. 2000, 227, 561. https://doi.org/10.1006/jcis.2000.6894
  9. Shao, M.; Han, J.; Wei, M.; Evans, D. G.; Duan, X. Inter. J. Hydro. Energy 2011, 36, 13452. https://doi.org/10.1016/j.ijhydene.2011.07.106
  10. El-Kemar, M.; El-Shamy, H. J. Photochem. Photobiol. A: Chem. 2009, 205, 151. https://doi.org/10.1016/j.jphotochem.2009.04.021
  11. Li, Y.; He, F.; Peng, S.; Lu, G.; Li, S. Inter. J. Hydro. Energy 2011, 36, 10565. https://doi.org/10.1016/j.ijhydene.2011.05.166
  12. Torres-Martínez, C. L.; Kho, R.; Mian, O. I.; Mehra, R. K. J.Colloid Interf. Sci. 2001, 240, 525. https://doi.org/10.1006/jcis.2001.7684
  13. Chen, J.; Lin, S.; Yan, G.; Yang, L.; Chen, X. Catal. Commun. 2008, 9, 65. https://doi.org/10.1016/j.catcom.2007.05.022
  14. Song, H.; Leem, Y.-M.; Kim, B.-G.; Yu, Y.-T. J. Phys. Chem. Solids 2008, 69, 153. https://doi.org/10.1016/j.jpcs.2007.08.011
  15. Feng, Q. J.; Shen, D. Z.; Zhang, J. Y.; Liang, H. W.; Zhao, D. X.; Lu, Y. M.; Fan, X. W. J. Cryst. Growth 2005, 285, 561. https://doi.org/10.1016/j.jcrysgro.2005.09.003
  16. Zhang, W.-M.; Li, H.-M.; Sun, Z.-X.; Zhang, Q.; Forsling, W. Microporous Mesoporous Mater. 2012, 147, 222. https://doi.org/10.1016/j.micromeso.2011.06.017
  17. Shao, H.-F.; Qian, X.-F.; Zhu, Z.-K. J. Solid State Chem. 2005, 178, 3522. https://doi.org/10.1016/j.jssc.2005.09.007
  18. Aleman, B.; Fernandez, P.; Piqueras, J. J. Cryst. Growth 2010, 312, 3117. https://doi.org/10.1016/j.jcrysgro.2010.07.066
  19. Yang, P.; Lu, M.; Xu, D.; Yuan, D.; Song, C.; Zhou, G. Appl. Phys. A 2002, 74, 525. https://doi.org/10.1007/s003390101003
  20. Zhou, J.; Goto, H.; Sawaki, N.; Akasaki, I. J. Appl. Phys. 1986, 25, 1663. https://doi.org/10.1143/JJAP.25.1663
  21. Soni, H.; Chawda, M.; Bodas, D. Mater. Lett. 2009, 63, 767. https://doi.org/10.1016/j.matlet.2008.12.052
  22. Saravana Kumar, S.; Abdu lKhadar, M.; Nair, KGM. J. Luminescence 2011, 131, 786. https://doi.org/10.1016/j.jlumin.2010.12.004
  23. Sharman, R.; Bisen, D. P.; Dhoble, S. J.; Brahme, N.; Chandra, B. P. J. Luminescence 2011, 131, 2089. https://doi.org/10.1016/j.jlumin.2011.05.020
  24. Borse, P. H.; Vogel, W.; Kulkarni, S. K. J. Colloid Interf. Sci. 2006, 293, 437. https://doi.org/10.1016/j.jcis.2005.06.056
  25. Tang, T.-P. Ceramics Inter. 2007, 33, 1251. https://doi.org/10.1016/j.ceramint.2006.03.032
  26. Muruganandhama, M.; Amuthaa, R.; Repo, E.; Sillanpaa, M.; Kusumoto, Y.; Abdulla-Al-Mamun, M. J. Photochem. Photobiol. A: Chem. 2010, 216, 133. https://doi.org/10.1016/j.jphotochem.2010.06.008
  27. Hong, W. J.; Kang, M. Mater. Lett. 2006, 60, 1296. https://doi.org/10.1016/j.matlet.2005.11.036
  28. Lee, B.-Y.; Park, S.-Y.; Kang, M.; Lee, S.-C.; Choung, S.-J. Appl. Catal. A: Gen. 2003, 253, 371. https://doi.org/10.1016/S0926-860X(03)00542-8
  29. Xu, S.; Ng, J.; Zhang, X.; Bai, H.; Sun, D. D. Inter. J. Hydro. Energy 2010, 35, 5254. https://doi.org/10.1016/j.ijhydene.2010.02.129
  30. Li , Y.; Wang, J.; Peng, S.; Lu, G.; Lu, S. Inter. J. Hydro. Energy 2010, 35, 7116. https://doi.org/10.1016/j.ijhydene.2010.02.017
  31. Kwak, B. S.; Chae, J.; Kim, J.; Kang, M. Bull. Korean Chem. Soc. 2009, 30, 1047. https://doi.org/10.5012/bkcs.2009.30.5.1047
  32. Li, Y.; He, F.; Peng, S.; Lu, G.; Li, S. Inter. J. Hydro. Energy 2011, 36, 10565. https://doi.org/10.1016/j.ijhydene.2011.05.166
  33. Lin, Y.; Lin, R.; Yin, F.; Xiao, X.; Wu, M.; Gu, W.; Li, W. J. Photochem. Photobiol. A: Chem. 1999, 125, 135. https://doi.org/10.1016/S1010-6030(99)00090-8
  34. Rusdi, R.; Rahman, A. A.; Mohamed, N. S.; Kamarudin, N.; Kamarulzaman, N. Powder Technol. 2011, 210, 18. https://doi.org/10.1016/j.powtec.2011.02.005
  35. Kwak, B. S.; Choi, H.-C.; Woo, J. W.; An, J. B.; Ryu, S. G.; Kang, M. Clean Technol. 2011, 17, 78.
  36. Liu, H.; Zhang, K.; Jing, D.; Liu, G.; Guo, L. Inter. J. Hydro. Energy 2010, 35, 7080. https://doi.org/10.1016/j.ijhydene.2010.01.028
  37. Onishi, T.; Abe, K.; Miyoshi, Y.; Wakita, K.; Sato, N.; Mochizuki K. J. Phys. Chem. Solids 2005, 66, 1947. https://doi.org/10.1016/j.jpcs.2005.09.033
  38. Karami, H.; Kafi, B.; Mortazavi, S. N. Int. J. Electrochem. Sci. 2009, 4, 414.
  39. Kim, Y.; Jeong, J. H.; Kang, M. Inorganica Chimica Acta 2011, 365, 400. https://doi.org/10.1016/j.ica.2010.09.041

Cited by

  1. In Situ $I$ –$V$ Measurements of an Ultraviolet Enhanced $\hbox{ZnS:TiO}_{2}/\hbox{n-Si}$ Quantum Dot Heterojunction Photodiode Under 120 MeV $\hbox{Au}^{9+}$ Ions vol.13, pp.3, 2013, https://doi.org/10.1109/TDMR.2013.2239646
  2. In-Situ $I\hbox{--}V$ Measurements of ${\rm ZnS}{:}{\rm TiO}_{2}/{\rm p}\hbox{-}{\rm Si}$ Quantum Dot Heterojunction Photodiode Under 120 MeV ${\rm Au}^{9+}$ Ion Irradiation vol.49, pp.9, 2013, https://doi.org/10.1109/JQE.2013.2273946
  3. Synthesis of Submicron Hexagonal Plate-Type SnS2and Band Gap-Tuned Sn1−xTixS2Materials and Their Hydrogen Production Abilities on Methanol/Water Phot vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/479508
  4. A self-powered ultraviolet photodetector based on TiO2/Ag/ZnS nanotubes with high stability and fast response vol.8, pp.4, 2012, https://doi.org/10.1039/c9tc05326c
  5. TiO2/TiOxNY hollow mushrooms-like nanocomposite photoanode for hydrogen electrogeneration vol.27, pp.1, 2012, https://doi.org/10.1007/s10934-019-00792-0