DOI QR코드

DOI QR Code

오이 시설재배에서 키토산 처리가 토양 미생물상에 미치는 효과

Effect of Chitosan on Microbial Community in Soils Planted with Cucumber under Protected Cultivation

  • 박기춘 (농촌진흥청 국립원예특작과학원 인삼과) ;
  • 장태현 (경북대학교 생태환경대학 생태환경시스템학부)
  • Park, Kee-Choon (Department of Herbal Crop Research, Rural Development Administration) ;
  • Chang, Tae-Hyun (Division of Ecology and Environmental System, College of Ecology and Environmental Science, Kyungpook National University)
  • 투고 : 2011.12.04
  • 심사 : 2012.04.05
  • 발행 : 2012.06.30

초록

오이시설하우스 토양에 키토산의 분말과 액상을 처리하여 90일, 160일 및 200일이 경과한 후에 인지질지방산을 추출하여 토양 미생물상 구성 및 토양 미생물의 생리적 지표를 분석하였다. 확인된 총지방산을 주요인 분석으로 분석한 결과 키토산 처리 후 90일에 키토산 분말 처리구는 PC(주요인)1 대하여 키토산을 처리하지 않은 대조구와 완전히 구분되었고, 키토산 용액 처리구는 PC2 모두에 대하여 대조구와 뚜렷이 구분되었다. 키토산 분말 처리 후 160일에 대조구와 비교하여 키토산 분말 처리구는 PC2에 대하여 완전히 구분되었지만 키토산 용액 처리구는 PC1과 PC2 모두에 대하여 뚜렷이 구분되지 못하였다. 키토산 처리 후 200일에는 PC1과 PC2 모두에 대하여 처리 간 차이가 없었다. 지표 지방산을 이용한 미생물군과 생리적 지표의 차이를 보면, 키토산을 토양에 처리한 후 90일에는 토양미생물군에 미치는 효과가 나타나지 않았지만, 곰팡이/세균 비율은 키토산 용액 처리구에서 유의성 있게 증가하였다. 키토산 처리 후 160일은 균근이 키토산 분말 처리구에서 증가하였다. 세균은 그램 음성균/그램 양성균 비율이 키토산 용액 처리구에서 증가하였고, cyclo-지방산/전구체 비율은 대조구가 키토산 분말 처리구보다 높았다. 곰팡이/세균 비율은 키토산 처리구 모두가 통계적으로 유의성 있게 높았다. 키토산 처리 후 200일 조사에서 호기성균/혐기성균 세균의 비율이 키토산 분말 처리구가 키토산 용액 처리구보다 높았고, 포화지방산/불포화지방산 비율은 키토산 용액 처리구가 키토산 분말 처리구보다 통계적으로 유의성 있게 높았다. 키토산은 처리 후 160일까지 토양 미생물상을 변화시켰으며 분말에서 효과가 컸다. 미생물 생리적 지표에 미치는 키토산의 영향은 처리 160일 이후에 나타나기 시작하여 200일까지 나타났다.

Soil microbial community and soil physiological parameters were investigated by analyzing phospholipid fatty acids extracted from the soils amended with chitosan powder and solution in a cucumber greenhouse. The soils were sampled at 90, 160, 200 days after treatment. Identified fatty acids were analyzed with principal component (PC) analysis. Chitosan powder soils and chitosan solution soils were separated from non-treated control soils by PC1 and PC2 90 days after treatment, respectively. And chitosan powder soils were separated from non-treated control soils by PC2 160 days after treatment. The ratio of fungi to bacteria increased significantly in chitosan solution-amended soils compared with the control soils 90 days after treatment. Microbial groups and physiological parameters were investigated 160 days after treatment: vesicular-arbuscular mycorrhizal fungi (VAM) significantly increased in soils amended with chitosan powder compared with other soils, the ratio of gram negative bacteria to gram positive bacteria and cyclo-fatty acids to precursors were significantly higher and lower in soils amended with chitosan solution and chitosan powder compared with control soils, respectively, and the ratio of fungi to bacteria were significantly lower in control soils compared with chitosan-treated soils. The chitosan powder increased the ratio of aerobic to anaerobic bacteria and lowered the ratio of saturated to unsaturated fatty acids compared with chitosan solution 200 days after soil application. In conclusion, chitosan powder changed the soil microbial community and the effects maintained up to 160 days after soil application. The effect of physiological parameters on the soil microbial community started to appear 160 days after and continued up to 200 days after soil application of chitosan.

키워드

참고문헌

  1. Abdel-Mawgoud, A.M.R., A.S Tantawy, M.A El-Nemr, and Y.N. Sassine. 2010. Growth and yield responses of strawberry plants to chitosan application. European J. Scientific Res. p. 161-168.
  2. Badawy, M.E.I. 2010. Structure and antimicrobial activity relationship of quaternary N-Alkyl chitosan derivatives against some plant pathogens. J. Appl. Polymer Sci. 117:960-969. https://doi.org/10.1002/app.31492
  3. Barber, M.S., R.E. Bertram, and J.P. Ride. 1989. Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol. Mol. Plant Pathol. 34:3-12. https://doi.org/10.1016/0885-5765(89)90012-X
  4. Bell, A.A., J.C. Hubbard, and L. Liu. 1998. Effects of chitin and chitosan on the incidence and severity of fusarium yellows of celery. Plant Dis. 82:322-328 https://doi.org/10.1094/PDIS.1998.82.3.322
  5. Bengamou, N. and G. Theriault. 1992. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum sp. radicislycopersici. Physiol. Mol. Plant Pathol. 41:33-52. https://doi.org/10.1016/0885-5765(92)90047-Y
  6. Benhamou N., J.W. Kloepper, and S. Tuzun. 1994. Induction of systemic resistance to Fusarium wilt of tomato plants by seed treatment with chitosan. Phytopathology 84:1432-1444. https://doi.org/10.1094/Phyto-84-1432
  7. Bhaskara Reddy, M.V., J. Arul, P. Angers, and L. Couture. 1999. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J. Agric. Food Chem. 47:1208-1216. https://doi.org/10.1021/jf981225k
  8. Bittelli, M., M. Flury, G. Campbell, and E. Nichils. 2001. Reduction of transpiretion through foliar application of chitosan. Agricultural Forest Meteorol. 107:167-175. https://doi.org/10.1016/S0168-1923(00)00242-2
  9. Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecol. 35:265-278. https://doi.org/10.1007/s002489900082
  10. Boonlertnirun, S., E. Sarobol, S. Meechoui, and I. Sooksathan. 2007. Drought recovery and grain yield rotential of rice after chitosan application. Kasetsart J. Nat. Sci. 41:1-6.
  11. Boyle, S.A., R.R. Yarwood, P.J. Bottomley, and D.D. Myrold. 2008. Bacterial and fungal contributions to soil nitrogen cycling under Douglass fir and red alder at two sites in Oregon. Soil Bio. Biochem. 40:443-451. https://doi.org/10.1016/j.soilbio.2007.09.007
  12. Chang, T.H. 2009. Disease control efficacy of chitosan preparations against tomato leaf blight. Res. Plant Dis. 15:248-253. https://doi.org/10.5423/RPD.2009.15.3.248
  13. Chibu, H. and H. Shibayama, 2001. Effects of chitosan applications on the growth of several crops, p. 235-239. In: T. Uragami, K. Kurita, and T. Fukamizo (eds.). Chitin and chitosan in life science. Yamaguchi Inc., New York, USA.
  14. Choi, S.J. 2007. Influence of chitosan treatment on the disease incidence and quality deterioration of postharvest grape. Kor. J. Hort. Sci. Technol. 25:63-66.
  15. El Ghaouth, A.J., A.R. Ponnampalam, and M. Boulet. 1991. Chitosan coating effect on storability and quality of fresh strawberries. J. Food Sci. 56:1618-1620. https://doi.org/10.1111/j.1365-2621.1991.tb08655.x
  16. Fierer, N., J.P. Schimel, and P.A. Holden. 2003. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35:167-176. https://doi.org/10.1016/S0038-0717(02)00251-1
  17. Griffiths, B.S., K. Ritz, N. Ebblewhite, and G. Dobson. 1999. Soil microbial community structure: Effects of substrate loading rates. Soil Biol. Biochem. 31:145-153.
  18. Hirano, S., T. Yamamoto, M. Hayashi, T. Nishida, and H. Inui. 1990. Chitinase activity in seeds coated with chitosan derivatives. Agri. Biol. Chem. 54:2719-2720. https://doi.org/10.1271/bbb1961.54.2719
  19. Hitomi, A., M. Yuya, A. Sributta, H. Takashi, S. Kosuke, and O. Katsumi. 2006 Growth promotion by some chitosans and effects of chitosan on the soil microorganism in Eustoma grandiflorum (Raf.) Shinn. Bull. Fac. Life Env. Sci. Shimane Univ. 11:43-48.
  20. Jayaraj, J., M. Rahman, A. Wan, and Z.K. Punja. 2009. Enhanced resistance to foliar fungal pathogens in carrot by application of elicitors. Ann. Appl. Biol. 155:71-80. https://doi.org/10.1111/j.1744-7348.2009.00321.x
  21. Kendra, D.F. and I.A. Hadwiger. 1984. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits oisatin fomation in Pisum sativum. Experimental Mycol. 8:276-281. https://doi.org/10.1016/0147-5975(84)90013-6
  22. Lee, J.Y., S.J. Chang, Y.T. Chi, and H.K. Kim. 2001. Effects of chitosan hydrolysates on the vegetative grow and fruit yield of cucumber. Agr. Sci. Technol. 36:109-120.
  23. Lee, H.J., K.C. Kim, J.H. Lim, C.K. Park, and Y.S. Hwang. 2001. Influence of High Molecular Weight Chitosan Sprays on Quality of Harvested Strawberries. Kor. J. Hort. Sci. Technol. 19:55-55.
  24. Lee, J.S., M.J. Im, J.Y. Lee, Y. Choi, Y.H. Baek, J. Baik, and M. Chiang. 2009. Effect of growth condition and chitosan treatment on the growth of some species of herbs. Kor. J. Hort. Sci. Technol. 27:178-178.
  25. Li, W.H., C.B. Zhang, H.B. Jiang, G.R. Xin, and Z.Y. Yang. 2006. Changes in soil Microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant Soil 281:309-324. https://doi.org/10.1007/s11104-005-9641-3
  26. Nilsson, L.O., E. Baath, U. Falkengren-Grerup, and H. Wallander. 2007. Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia 153:375-384. https://doi.org/10.1007/s00442-007-0735-x
  27. Oh, S.H., K.W. Seo, D.S. Choi, K.S. Han, and W.G. Choi. 2000. Application effect of chitosan fertilizer on the growth of cabbage and GABA contents in the chiness cabbage. J. Kor. Soc. Agri. Chem. Biotechnol. 43:34-38.
  28. Ohta, K., S. Morisita, K. Suda, N. Kobayashi, and T. Hosoki. 2004. Effects of chitosan soil mixture treatment in seedling stage on the growth and flowering of several ornamental plants. J. Japan. Soc. Hort. Sci. 73:66-68. https://doi.org/10.2503/jjshs.73.66
  29. Park, J.H. and B.W. Kim. 2000. Effect of chitosan and woody charred materials treatment on the growth and yield of garlic (Allium sativum L.) and onion (Allium cepa L.). Res. Natural Resources 3:1-7.
  30. Pastucha, A. 2005. The effect of chitosan on the formation of microorganism communities in the rhizosphere soil of soybean. Acta Sci. Pol. Hortorum Cultus 4(2):69-77.
  31. Peacock, A.D., M.D. Mullen, D.B. Ringelberg, D.D. Tyler, D.B. Hedrick, P.M, Gale, and D.C. White. 2001. Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol. Biochem. 33:1011-1019. https://doi.org/10.1016/S0038-0717(01)00004-9
  32. Pinkart, H.C., D.B. Ringelberg, Y.M. Piceno, S.J. Macnaughton, and D.C. White. 2002. Biochemical approaches to biomass measurements and community structure analysis, p. 101-113. In: C.J. Hurst and R.L. Crawford (eds.). Manual of environmental microbiology. ASM Press, Washington, DC.
  33. Teichgraber, P., L. Popper, and I. Knorr. 1991. Chitosan as an elicitor for the production of chitynase, an antifungal enzyme from soybean seeds. Agrofood industry Hi-tech. p. 11-14.
  34. Transmo A., O. Skaugrud, and G.E. Harman. 1993. Chitosan induces resistance in crop plants their fungal pathogens. Phytopathology 46:411-414.
  35. Vaidya, G.S., K. Shrestha, B.R. Khadge, N.C. Johnson, and H. Wallander. 2008. Organic matter stimulates bacteria and arbuscular mycorrhizal fungi in Bauhinia purpurea and Leucaena diversifolia plantations on eroded slopes in Nepal. Restoration Ecol. 16:79-87. https://doi.org/10.1111/j.1526-100X.2007.00264.x
  36. Vasiukova N.I., S.V. Zinoveva, L.I. Ilinskaia, E.A. Perekhod, N.G. Chalenko, G.I. Gerasimova, A.V. Ilina, P. Varlamov, and K. Zeretskovskaia. 2001. Modulation of plant disease by water soluble chitosan. Prikladnaia Biokhimiiai Mikrobiologiia. 37:115-122.
  37. Walker, R., S. Morris, P. Brown, and A. Gracie. 2004. Evaluation of potential for chitosan to enhance plant defense. Rural Industries Research and Development Corporation, Kingston, Australia.
  38. Wanichpongpan, P., K. Suriyachan, and S. Chandrkrachang. 2001. Effects of chitosan on the growth of Gerbera flower plant (Gerbera jamesonii), p. 198-201. In: T. Uragami, K. Kurita, and T. Fukamizo (eds.). Chitin and Chitosan in Life Science. Yamaguchi Inc., New York, USA.
  39. Yoo, Y.K., H.J. Park, S.W. Kang, and H.K. Kim. 1999. Effect of chitosan and sucrose on the cut rose 'Cardinal'. Kor. J. Hort. Sci. Technol. 17:482-485.