DOI QR코드

DOI QR Code

Isolation and Characterization of a Gene Encoding Hexokinase from Loquat (Eriobotrya japonica Lindl.)

  • Qin, Qiaoping (School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University) ;
  • Zhang, Lanlan (School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University) ;
  • Xu, Kai (School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University) ;
  • Jiang, Li (School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University) ;
  • Cheng, Longjun (The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University) ;
  • Xu, Chuanmei (The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University) ;
  • Cui, Yongyi (School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University)
  • 투고 : 2012.02.07
  • 심사 : 2012.03.13
  • 발행 : 2012.06.30

초록

Hexokinase is the first enzyme in the hexose assimilation pathway; it acts as a sensor for plant sugar responses, and it is also important in determining the fruit sugar levels. The full-length cDNA of a hexokinase gene was isolated from loquat through reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends, which was designated as EjHXK1. EjHXK1 is 1,839 bp long and contains an entire open reading frame encoding 497 amino acids. The predicted protein of EjHXK1 shares 72%-81% similarity with other plant hexokinases. Phylogeny analysis indicated that EjHXK1 is closely related to maize and rice hexokinases. Transient expression of the 35S: EjHXK1-GFP fusion protein was observed on the cell membrane and cytoplasm. Real-time RT-PCR indicated that EjHXK1 is expressed in loquat leaves, stems, flowers, and fruits. EjHXK1 transcripts were higher during early fruit development, but decreases before maturation, which is consistent with hexokinase enzyme activity during fruit development and conducive for hexose accumulation in mature fruits. These results imply that EjHXK1 may play important roles in the regulation of sugar flux during fruit ripening.

키워드

참고문헌

  1. Bantog, N.A., K. Shiratake, and S. Yamaki. 1999. Changes in sugar and sorbitol and sucrose related enzyme activities during development of loquat (Eriobotrya japonica Lindl. cv. Mogi) fruit. J. Japan. Soc. Hort. Sci. 68:942-948. https://doi.org/10.2503/jjshs.68.942
  2. Bantog, N.A., K. Yamada, N. Niwa, K. Shiratake, and S. Yamaki. 2000. Gene expression of $NAD^+$-dependent sorbitol dehydrogenase and $NADP^+$-dependent sorbitol-6-phosphate dehydrogenase during development of loquat (Eriobotrya japonica Lindl.) fruit. J. Japan. Soc. Hort. Sci. 69:231-236. https://doi.org/10.2503/jjshs.69.231
  3. Canete, M.L., V. Pinillos, J. Cuevas, and J.J. Hueso. 2007. Sensory evaluation of the main loquat cultivars in spain. Acta Hort. 750:159-164.
  4. Cho, J.I., N. Ryoo, S. Ko, S.K. Lee, J. Lee, K.H. Jung, Y.H. Lee, S.H. Bhoo, J. Winderickx, G. An, T.R. Hahn, and J.S. Jeon. 2006. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta 224:598-611. https://doi.org/10.1007/s00425-006-0251-y
  5. Cho, J.I., N. Ryoo, J.S. Eom, D.W. Lee, H.B. Kim, S.W. Jeong, Y.H. Lee, Y.K. Kwon, M.H. Cho, S.H. Bhoo, T.R. Hahn, Y.I. Park, I. Hwang, J. Sheen, and J.S. Jeon. 2009. Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol. 149:745-759.
  6. Dai, N., A. Schaffer, M. Petreikov, Y. Shahak, Y. Giller, K. Ratner, A. Levine, and D. Granot. 1999. Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253-1266. https://doi.org/10.1105/tpc.11.7.1253
  7. Dai, N., M. Kandel-Kfir, M. Petreikov, R. Hanael, I. Levin, B. Ricard, C. Rothan, A.A. Schaffer, and D. Granot. 2002. The tomato hexokinase LeHXK1 cloning, mapping, expression pattern and phylogenetic relationships. Plant Sci. 163:581-59.
  8. Damari-Weissler, H., M. Kandel-Kfir, D. Gidoni, A. Mett, E. Belausov, and D. Granot. 2006. Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants. Planta 224:1495-1502. https://doi.org/10.1007/s00425-006-0387-9
  9. Fox, T.C., B.J. Green, R.A. Kennedy, and M.E. Rumpho. 1998. Changes in hexokinase activity in echinochloa phyllopogon and echinochloa crus-pavonis in response to abiotic stress. Plant Physiol. 118:1403-1409. https://doi.org/10.1104/pp.118.4.1403
  10. Frommer, W.B., W.X. Schulze, and S. Lalonde. 2003. Plant science: Hexokinase, jack-of-all-trades. Science 300:261-263. https://doi.org/10.1126/science.1084120
  11. Gasic, K., A. Hernandez, and S. Korban. 2004. RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol. Biol. Rep. 22:437-438. https://doi.org/10.1007/BF02772687
  12. Giese, J.O., K. Herbers, M. Hoffmann, R.B. Klosgen, and U. Sonnewald. 2005. Isolation and functional characterization of a novel plastidic hexokinase from Nicotiana tabacum. FEBS Lett. 579:827-831. https://doi.org/10.1016/j.febslet.2004.12.071
  13. Hasegawa, P.N., A.F.D. Faria, A.Z. Mercadante, E.A. Chagas, R. Pio, F.M. Lajolo, B.R. Cordenunsi, and E. Purgatto. 2010. Chemical composition of five loquat cultivars planted in Brazil. Cienc Tecnol Aliment Campinas 30:552-559. https://doi.org/10.1590/S0101-20612010000200040
  14. Jang, J.C., P. Leon, L. Zhou, and J. Sheen. 1997. Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5-19. https://doi.org/10.1105/tpc.9.1.5
  15. Jiang, H., W. Dian, F. Liu, and P. Wu. 2003. Isolation and characterization of two fructokinase cDNA clones from rice. Phytochemistry 62:47-52. https://doi.org/10.1016/S0031-9422(02)00428-4
  16. Kandel-Kfir, M., H. Damari-Weissler, M. German, D. Gidoni, A. Mett, E. Belausov, M. Petreikov, N. Adir, and D. Granot. 2006. Two newly identified membrane-associated and plastidic tomato HXKs: Characteristics, predicted structure and intracellular localization. Planta 224:1341-1352. https://doi.org/10.1007/s00425-006-0318-9
  17. Karve, A. and B.D. Moore. 2009. Function of Arabidopsis hexokinase-like1 as a negative regulator of plant growth. J. Exp. Bot. 60:4137-4149. https://doi.org/10.1093/jxb/erp252
  18. Karve, R., M. Lauria, A. Virnig, X. Xia, B.L. Rauh, and B.D. Moore. 2010. Evolutionary lineages and functional diversification of plant hexokinases. Mol. Plant 3:334-346. https://doi.org/10.1093/mp/ssq003
  19. Menu, T., C. Rothan, N. Dai, M. Petreikov, C. Etienne, A. Destrac-Irvine, A. Schaffer, D. Granot, and B. Ricard. 2001. Cloning and characterization of a cDNA encoding hexokinase from tomato. Plant Sci. 160:209-218. https://doi.org/10.1016/S0168-9452(00)00332-0
  20. Olsson, T., M. Thelander, and H. Ronne. 2003. A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens. J. Biol. Chem. 278:44439-44447. https://doi.org/10.1074/jbc.M306265200
  21. Qin, Q.P., S.L. Zhang, J.W. Chen, M. Xie, Y.F. Jin, K.S. Chen, and A. Syed. 2004. Isolation and expression analysis of fructokinase genes from citrus. Acta Bot. Sin. 46:1408-1415.
  22. Qiu, W.L. and H.Z. Zhang. 1996. Fruit flora of China (longan and loquat). China Forestry Press, Beijing, China.
  23. Renz, A. and M. Stitt. 1993. Substrate specificity and product inhibition of different forms of fructokinase and hexokinase in developing potato tubers. Planta 190:166-175.
  24. Rezende, G.L., C. Logullo, L. Meyer, L.B. Machado, A.L. Oliveira-Carvalho, R.B. Zingali, D. Cifuentes, and A. Galina. 2006. Partial purification of tightly bound mitochondrial hexokinase from maize (Zea mays L.) root membranes. Braz J. Med. Biol. Res. 39:1159-1169. https://doi.org/10.1590/S0100-879X2006000900003
  25. Roessner-Tunali, U., B. Hegemann, A. Lytovchenko, F. Carrari, C. Bruedigam, D. Granot, and A.R. Fernie. 2003. Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol. 133:84-99. https://doi.org/10.1104/pp.103.023572
  26. Rozen, S. and H. Skaletsky. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132:365-386.
  27. Schleucher, J., P.J. Vanderveer, and T.D. Sharkey. 1998. Export of carbon from chloroplasts at night. Plant Physiol. 118:1439-1445. https://doi.org/10.1104/pp.118.4.1439
  28. Shaw, P.E. and C.W. Wilson. 1981. Determination of organic acids and sugars in loquat (Eriobotrya japonica Lindl.) by high-pressure liquid chromatography. J. Sci. Food Agric. 32:1242-1246. https://doi.org/10.1002/jsfa.2740321217
  29. Smeekens, S. 1998. Sugar regulation of gene expression in plants. Curr. Opin. Plant Biol. 1:230-234. https://doi.org/10.1016/S1369-5266(98)80109-X
  30. Veramendi, J., U. Roessner, A. Renz, L. Willmitzer, and R.N. Trethewey. 1999. Antisense repression of hexokinase 1 leads to an overaccumulation of starch in leaves of transgenic potato plants but not to significant changes in tuber carbohydrate metabolism. Plant Physiol. 121:123-134. https://doi.org/10.1104/pp.121.1.123
  31. Veramendi, J., A.R. Fernie, A. Leisse, L. Willmitzer, and R.N. Trethewey. 2002. Potato hexokinase 2 complements transgenic Arabidopsis plants deficient in hexokinase 1 but does not play a key role in tuber carbohydrate metabolism. Plant Mol. Biol. 49:491-501. https://doi.org/10.1023/A:1015528014562
  32. Wiese, A., F. Groner, U. Sonnewald, H. Deppner, J. Lerchl, U. Hebbeker, U. Flugge, and A. Weber. 1999. Spinach hexokinase I is located in the outer envelope membrane of plastids. FEBS Lett. 461:13-18. https://doi.org/10.1016/S0014-5793(99)01417-9

피인용 문헌

  1. Isolation and Characterization of A Cytosolic Pyruvate Kinase cDNA From Loquat (Eriobotrya japonica Lindl.) vol.31, pp.1, 2013, https://doi.org/10.1007/s11105-012-0479-6
  2. Isolation and induced expression of a fructokinase gene from loquat vol.61, pp.3, 2014, https://doi.org/10.1134/S1021443714030121
  3. Overexpression of a loquat (Eriobotrya japonica Lindl.) vacuolar invertase affects sucrose levels and growth vol.123, pp.1, 2015, https://doi.org/10.1007/s11240-015-0817-0
  4. Characterization of SWEET family members from loquat and their responses to exogenous induction vol.13, pp.6, 2017, https://doi.org/10.1007/s11295-017-1200-6
  5. Characterisation of the subunit genes of pyrophosphate-dependent phosphofructokinase from loquat (Eriobotrya japonica Lindl.) vol.10, pp.5, 2012, https://doi.org/10.1007/s11295-014-0774-5