DOI QR코드

DOI QR Code

A Kinetic Investigation of Ethanol Oxidation on a Nickel Oxyhydroxide Electrode

  • Danaee, I. (Abadan Faculty of Petroleum Engineering, Petroleum University of Technology) ;
  • Jafarian, M. (Department of chemistry, K. N. Toosi University of Technology) ;
  • Sharafi, M. (Department of chemistry, K. N. Toosi University of Technology) ;
  • Gobal, F. (Department of chemistry, Sharif University of Technology)
  • Received : 2012.03.18
  • Accepted : 2012.03.28
  • Published : 2012.03.30

Abstract

Nickel modified NiOOH electrodes were used for the electrocatalytic oxidation of ethanol in alkaline solutions where the methods of cyclic voltammetry (CV) and chronoamperometry (CA) were employed. In CV studies, in the presence of ethanol, an increase in the current for the oxidation of nickel hydroxide is followed by a decrease in the corresponding cathodic current. This suggests that the oxidation of ethanol is being catalysed through mediated electron transfer across the nickel hydroxide layer comprising of nickel ions of various valence states. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of ethanol was found to be $1{\times}10^7cm^2s^{-1}$.

Keywords

References

  1. H. Uchida, Y. Mizuno and M. Watanabe, J. Electrochem. Soc. 149, A682 (2002). https://doi.org/10.1149/1.1471539
  2. W. C. Choi, J. D. Kim and S. I. Woo, Catal. Today 74, 235 (2002). https://doi.org/10.1016/S0920-5861(02)00026-3
  3. Z. B. Wang, G. P. Yin and P. F. Shi, Carbon 44, 133 (2006). https://doi.org/10.1016/j.carbon.2005.06.043
  4. C. Lamy, E. M. Belgsir and J.-M. Leger, J. Appl. Electrochem. 31, 799 (2001). https://doi.org/10.1023/A:1017587310150
  5. E. V. Spinace, A. O. Neto and M. Linardi, J. Power Sources 124, 426 (2003). https://doi.org/10.1016/S0378-7753(03)00808-5
  6. W. J. Zhou, S.Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xin, S. Douvartzides and P. Tsiakaras, J. Power Sources 140, 50 (2005). https://doi.org/10.1016/j.jpowsour.2004.08.003
  7. Z. B. Wang, G. P. Yin, J. Zhang, Y. C. Sun and P. F. Shi, J. Power Sources 160, 37 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.021
  8. G. A. Camara, R. B. de Lima and T. Iwasita, Electrochem. Commun. 6, 812 (2004). https://doi.org/10.1016/j.elecom.2004.06.001
  9. C. Lamy, S. Rousseau, E. M. Belgsir, C. Coutanceau, and J.-M. Leger, Electrochim. Acta 49, 3901 (2004). https://doi.org/10.1016/j.electacta.2004.01.078
  10. A. O. Neto, M. J. Giz, J. Perez, E. A. Ticianelli and E. R. Gonzalez, J. Electrochem. Soc. 149, A272 (2002). https://doi.org/10.1149/1.1446080
  11. J. M. Leger, S. Rousseau, C. Coutanceau, F. Hahn and C. Lamy, Electrochim. Acta 50, 5118 (2005). https://doi.org/10.1016/j.electacta.2005.01.051
  12. J. P. I. Souza, S. L. Queiroz, K. Bergamaski, E. R. Gonzalez and F. C. Nart, J. Phys. Chem. B 106, 9825 (2002). https://doi.org/10.1021/jp014645c
  13. T. Iwasita and E. Pastor, Electrochim. Acta 39, 531 (1994). https://doi.org/10.1016/0013-4686(94)80097-9
  14. T. Iwasita, R. Dalbeck, E. Pastor and X. Xia, Electrochim. Acta 39, 1817 (1994). https://doi.org/10.1016/0013-4686(94)85170-0
  15. H. Hitmi, E. M. Belgsir, J.-M. Leger, C. Lamy and R. O. Lezna, Electrochim. Acta 39, 407 (1994). https://doi.org/10.1016/0013-4686(94)80080-4
  16. J. Shin, W. J. Tornquist, C. Korzeniewski and C. S. Hoaglund, Surf. Sci. 364, 122 (1996). https://doi.org/10.1016/0039-6028(96)00615-2
  17. X. H. Xia, H. D. Liess and T. Iwasita, J. Electroanal. Chem. 437, 233 (1997). https://doi.org/10.1016/S0022-0728(97)00404-X
  18. J. F. E. Gootzen, A. H. Wonders, A. P. Cox, W. Visscher and J. A. R. Van Veen, J. Mol. Catal. A: Chem. 127, 113 (1997). https://doi.org/10.1016/S1381-1169(97)00116-7
  19. R. Ianniello, V. M. Schmidt, J. L. Rodriguez and E. Pastor, J. Electroanal. Chem. 471, 167 (1999). https://doi.org/10.1016/S0022-0728(99)00273-9
  20. S.-M. Park, N. Chen and N. Doddapaneni, J. Electrochem. Soc. 142, 40 (1995). https://doi.org/10.1149/1.2043925
  21. J.-W. Kim and S.-M. Park, J. Electrochem. Soc. 146, 1075 (1999). https://doi.org/10.1149/1.1391723
  22. J.-W. Kim and S.-M. Park, J. Electrochem. Solid State Lett. 3, 385 (2000).
  23. J. W. Kim, S. M. Park, J. Korean Electrochem. Soc. 8, 117 (2005). https://doi.org/10.5229/JKES.2005.8.3.117
  24. M. Jafarian, F. Forouzandeh, I. Danaee, F. Gobal and M. G. Mahjani, J. Solid State Electrochem. 13, 1171 (2009). https://doi.org/10.1007/s10008-008-0632-1
  25. A. A. El-Shafei, J. Electroanal. Chem. 471, 89 (1999). https://doi.org/10.1016/S0022-0728(99)00235-1
  26. I. Danaee and M. Jafarian, A. Mirzapoor, F. Gobal, M.G. Mahjani, Electrochim. Acta 55, 2093 (2010). https://doi.org/10.1016/j.electacta.2009.11.039
  27. F. Hahn, B. Beden, M. J. Croissant and C. Lamy, Electrochim. Acta 31, 335 (1986). https://doi.org/10.1016/0013-4686(86)80087-1
  28. J. Desilvestro, D. A. Corrigan and M. J. Weaver, J. Electrochem. Soc. 135, 885 (1988). https://doi.org/10.1149/1.2095818
  29. I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal and M. G. Mahjani, Electrochim. Acta (2008) 53, 6602. https://doi.org/10.1016/j.electacta.2008.04.042
  30. A. J. Bard and L. R. Faulkner, Electrochemical Methods, fundamentals and applications, Wiley, New York, 2001, p. 591.
  31. E. Laviron, J. Electroanal. Chem. 101, 19 (1979). https://doi.org/10.1016/S0022-0728(79)80075-3
  32. R. S. Nicholson and I. Shain, Anal. Chem. 36, 706 (1964). https://doi.org/10.1021/ac60210a007
  33. J. A. Harrison and Z. A. Khan, J. Electroanal. Chem. 28, 131 (1970). https://doi.org/10.1016/S0022-0728(70)80288-1
  34. I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal and M. G. Mahjani, Int. J. Hydrogen Energy 34, 859 (2009). https://doi.org/10.1016/j.ijhydene.2008.10.067
  35. I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal and M. G. Mahjani, J. Phys. Chem. B 112, 15933 (2008). https://doi.org/10.1021/jp8069173
  36. I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal and M. G. Mahjani, Int. J. Hydrogen Energy 33, 4367 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.075
  37. C. Li, Y. Su, X. Lv, H. Shi, X. Yang and Y. Wang, Mater. Lett. 69, 92 (2012). https://doi.org/10.1016/j.matlet.2011.11.054
  38. X. Han, D. Wang, D. Liu, J. Huang and T. You, J. Colloid Interface Sci. 367, 342 (2012). https://doi.org/10.1016/j.jcis.2011.09.087
  39. G. Hu, F. Nitze, H. R. Barzegar, T. Sharifi, A. Miko ajczuk, C.-Wai Tai, A. Borodzinski and T. Wagberg, J. Power Sources 209, 236 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.080

Cited by

  1. Ni–B amorphous alloy nanoparticles modified nanoporous Cu toward ethanol oxidation in alkaline medium vol.247, 2014, https://doi.org/10.1016/j.jpowsour.2013.08.129
  2. In situ synthesis of nickel–boron amorphous alloy nanoparticles electrode on nanoporous copper film/brass plate for ethanol electro-oxidation vol.39, pp.7, 2014, https://doi.org/10.1016/j.ijhydene.2013.12.116
  3. Alloy Film and Its Enhanced Electrocatalytic Activity towards Methanol Oxidation vol.162, pp.14, 2015, https://doi.org/10.1149/2.0401514jes