DOI QR코드

DOI QR Code

NEW CONSTRUCTION OF THE EAGON-NORTHCOTT COMPLEX

  • Kang, Oh-Jin (Department of Mathematics School of Natural Sciences University of Incheon) ;
  • Kim, Joohyung (Department of Mathematics Education Wonkwang University)
  • 투고 : 2012.03.12
  • 심사 : 2012.06.05
  • 발행 : 2012.06.30

초록

The authors [6] introduced the concept of a complete matrix of grade $g$ > 3 to describe a structure theorem for complete intersections of grade $g$ > 3. We show that a complete matrix can be used to construct the Eagon-Northcott complex [7]. Moreover, we prove that it is the minimal free resolution $\mathbb{F}$ of a class of determinantal ideals of $n{\times}(n+2)$ matrices $X=(x_{ij})$ such that entries of each row of $X=(x_{ij})$ form a regular sequence and the second differential map of $\mathbb{F}$ is a matrix $f$ defined by the complete matrices of grade $n+2$.

키워드

참고문헌

  1. K. Akin, D.A. Buchsbaum, and J.Weyman, Resolutions of determinantal ideals, Adv. Math. 44 (1981), 1-30.
  2. D.A. Buchsbaum and D. Eisenbud, Remarks on ideals and Resolutions, Symposia Math XI (1973), 193-204, Acadamic Press, London.
  3. D.A. Buchsbaum and D. Eisenbud, What makes the complex exact ?, J. Algebra 25 (1973), 259-268. https://doi.org/10.1016/0021-8693(73)90044-6
  4. D.A. Buchsbaum and D.S. Rim, A generalized Koszul complex. II, Proc. Amer. Math. Soc. 16 (1965), 197-225.
  5. D.A. Buchsbaum, A new construction of the Eagon-Northcott complex, Adv. Math. 34 (1979), 58-76. https://doi.org/10.1016/0001-8708(79)90064-1
  6. E.J. Choi, O.J. Kang and H.J. Ko, A structure theorem for complete intersec- tions, Bull. Korean Math. Soc. 46 (2009), no 4, 657-671.
  7. J.A. Eagon and D.G. Northcott, Ideals de ned by matrices and a certain complex associated with them, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 269 (1962), 188-204. https://doi.org/10.1098/rspa.1962.0170
  8. M. Hashimoto, Determinantal ideals without minimal free resolutions, Nagoya Math. J. 118 (1990), 203-216. https://doi.org/10.1017/S0027763000003081
  9. M. Hashimoto, Resolutions of determinantal ideals :t-Minors of (t+2)${\times}$n Matrices, J. Algebra 142 (1991), 456-491. https://doi.org/10.1016/0021-8693(91)90320-8
  10. M. Hashimoto and K. Kurano, Resolutions of Determinantal ideals: n-minors of (n + 2)-Square Matrices, Adv. Math. 94 (1992), 1-66. https://doi.org/10.1016/0001-8708(92)90032-G
  11. O.J. Kang and H.J. Ko, The structure theorem for complete intersections of grade 4, Algebra Colloq. 12 (2) (2005), 181-197. https://doi.org/10.1142/S1005386705000179
  12. A. Lascoux, Syzygies des varietes determinantales, Adv. Math. 30 (1978), 202- 237. https://doi.org/10.1016/0001-8708(78)90037-3
  13. P. Pragacz and J. Weyman, Complexes associated with trace and evaluation: another approach to Lascoux's resolution, Adv. Math. 57 (1985), 163-207. https://doi.org/10.1016/0001-8708(85)90052-0
  14. P. Roberts, A minimal free complex associated to minors of a matrix, Preprint.