
Korean J. Math. 20 (2012), No. 3, pp. 293–305

MODAL, NECESSITY, SUFFICIENCY

AND CO-SUFFICIENCY OPERATORS

Yong Chan Kim

Abstract. We investigate the properties of modal, necessity, suffi-

ciency and co-sufficiency operators. We show that their operations
induce various relations, respectively.

1. Introduction

Pawlak [5] introduced rough set theory to generalize the classical set
theory. Rough approximations are defined by a partition of the universe
which is corresponding to the equivalence relation about information.
An information consists of (X,A) where X is a set of objects and A is a
set of attributes, a map a : X → P (Aa) where Aa is the value set of the
attribute a. Recently, intensional modal-like logics with the proposi-
tional operators induced by relations are important mathematical tools
for data analysis and knowledge processing [1-3, 6-9].

In this paper, we investigate the properties of modal, necessity, suf-
ficiency and co-sufficiency operators. We show that their operations
induce various relations, respectively.

2. Preliminaries

Definition 2.1. [2] Let P (X), P (Y ) be the families of subsets on
X and Y , respectively. Then a map F : P (X) → P (Y ) is called

(1) modal operator if F (
∪

i∈Γ Ai) =
∪

i∈Γ F (Ai), F (∅) = ∅,
(2) necessity operator if F (

∩
i∈Γ Ai) =

∩
i∈Γ F (Ai), F (X) = Y,

(3) sufficiency operator if F (
∪

i∈Γ Ai) =
∩

i∈Γ F (Ai), F (∅) = Y,
(4) co-sufficiency operator if F (

∩
i∈Γ Ai) =

∪
i∈Γ F (Ai), F (X) = ∅.
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(5) a dual operator F ∂ is defined by F ∂(A) = F (Ac)c. Moreover,
we define F c(A) = (F (A))c and F ∗(A) = F (Ac).

Definition 2.2. [2,4] Let R ⊂ P (X × Y ) be a relation. For each
A ∈ P (X), we define operations (y, x) ∈ R−1 iff (x, y) ∈ R and
[R], [[R]], ⟨R⟩, ⟨⟨R⟩⟩, [R]∗, ⟨R⟩∗ : P (X) → P (Y ) as follows:

[R](A) = {y ∈ Y | (∀x)((x, y) ∈ R → x ∈ A)},

[[R]](A) = {y ∈ Y | (∀x ∈ X)(x ∈ A → (x, y) ∈ R)}

⟨R⟩(A) = {y ∈ Y | (∃x ∈ X)((x, y) ∈ R, x ∈ A)}

⟨⟨R⟩⟩(A) = {y ∈ Y | (∃x ∈ X)((x, y) ∈ Rc, x ∈ Ac)},

[R]∗(A) = {y ∈ Y | (∀x ∈ X)((x, y) ∈ R → x ∈ Ac)}

⟨R⟩∗(A) = {y ∈ Y | (∃x ∈ X)((x, y) ∈ R, x ∈ Ac)}.

Theorem 2.3. [2] Let R ⊂ P (X × Y ) be a relation.
(1) ⟨R⟩ is a modal operator and [R] is a necessity operator with

⟨R⟩(A) = ([R](Ac))c = [R]∂(A), for each A ∈ P (X).
(2) If F : P (X) → P (Y ) is a modal operator on P (X), there exists

a unique relation RF ⊂ P (X ×Y ) such that ⟨RF ⟩ = F and [RF ] = F ∂

where (x, y) ∈ RF iff y ∈ F ({x}).
(3) R⟨R⟩ = R.

3. Modal, necessity, sufficiency and co-sufficiency operators

Lemma 3.1. Let F,G : P (X) → P (Y ) be operators. Then the
following properties hold:

(1) (F ∂)∂ = F , (F c)c = F and (F ∗)∗ = F .
(2) (F ∂)∗ = (F ∗)∂ , (F ∂)c = (F c)∂ and (F ∗)c = (F c)∗ = F ∂ .
(3) (F ∪G)∂ = F ∂∩G∂ , (F ∪G)∗ = F ∗∪G∗ and (F ∪G)c = F c∩Gc.
(4) F,G : P (X) → P (Y ) are modal operators, then F ∪G is a model

operator and it’s dual operator F ∂ ∩G∂ is a necessity operator.
(5) F,G : P (X) → P (Y ) are necessity operators, then F ∩ G is a

necessity operator and it’s dual operator F ∂ ∩G∂ is a model operator.
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Proof. (1) (F ∂)∂(A) = (F ∂(Ac))c = F (A).
(2) (F ∂)∗(A) = F ∂(Ac) = F c(A) = (F ∗(Ac))c = (F ∗)∂(A).
(F ∂)c(A) = (F ∂(A))c = F (Ac) = (F c(Ac))c = (F c)∂(A).
(3) (F ∪G)∂(A) = ((F ∪G)(Ac))c = (F (Ac))c∩(F (Ac))c = F ∂(A)∩

G∂(A). Other cases are similarly proved.
(4) and (5) are easily proved from (3).

�

Lemma 3.2. (1) A map F : P (X) → P (Y ) is a modal operator iff
F ∂ : P (X) → P (Y ) is a necessity operator.

(2) A map F : P (X) → P (Y ) is a sufficiency operator iff F ∂ :
P (X) → P (Y ) is a co-sufficiency operator operator.

(3) A map F : P (X) → P (Y ) is a modal operator iff F c : P (X) →
P (Y ) is a sufficient operator.

(4) A map F : P (X) → P (Y ) is a co-sufficiency operator iff F c :
P (X) → P (Y ) is a necessity operator operator.

(5) A map F : P (X) → P (Y ) is a sufficiency operator iff F ∗ :
P (X) → P (Y ) is a necessity operator operator.

(6) A map F : P (X) → P (Y ) is a modal operator iff F ∗ : P (X) →
P (Y ) is a co-sufficiency operator.

Proof. (1) Let F : P (X) → P (Y ) be a modal operator.

F ∂(
∩
i∈Γ

Ai) =
(
F (

∪
i∈Γ

Ac
i )
)c

=
( ∪

i∈Γ

F (Ac
i )
)c

=
∩
i∈Γ

(F (Ac
i ))

c =
∩
i∈Γ

F ∂(Ai).

F ∂(X) =
(
F (Xc)

)c

=
(
F (∅)

)c

= Y.

Conversely, (F ∂)∂(A) = (F ∂(Ac))c = F (A).

F (
∪
i∈Γ

Ai) =
(
F ∂(

∩
i∈Γ

Ac
i )
)c

=
( ∩

i∈Γ

F ∂(Ac
i )
)c

=
∪
i∈Γ

(F ∂(Ac
i ))

c =
∪
i∈Γ

F (Ai).

F (∅) =
(
F ∂((∅)c)

)c

= F (X)c = ∅.



296 Yong Chan Kim

(2), (3) and (4) are similarly proved as same in (1).
�

Theorem 3.3. Let R ⊂ P (X × Y ) be a relation.
(1) ⟨⟨R⟩⟩∗ is a modal operator and [[R]]∗ is a necessity operator with

⟨⟨R⟩⟩∗(A) = ([[R]]∗(Ac))c = ([[R]]∗)∂(A) for each A ∈ P (X).
(2) If F : P (X) → P (Y ) is a modal operator on P (X), there exists a

unique relation RF ⊂ P (X × Y ) such that ⟨⟨RF ⟩⟩∗ = F and [[RF ]]
∗ =

F ∂ where (x, y) ∈ RF iff y ∈ F ({x})c.
(3) R⟨⟨R⟩⟩∗ = R.

Proof. (1) We have ⟨⟨R⟩⟩∗(A) = ([[R]]∗(Ac))c = ([[R]]∗)∂(A) from:

y ∈ ([[R]]∗(Ac))c iff
(
(∀x ∈ X)(X ∈ A → (x, y) ∈ R)

)c

iff
(
(∀x ∈ X)((x, y) ∈ Rc, x ∈ A)c

)c

iff (∃x ∈ X)((x, y) ∈ Rc, x ∈ A)

iff y ∈ ⟨⟨R⟩⟩∗(A).

(2) Since A =
∪

x∈A{x} and F (A) =
∪

x∈A F ({x}), we have

y ∈ ⟨⟨RF ⟩⟩∗(A) iff (∃x ∈ X)((x, y) ∈ Rc
F & x ∈ A)

iff (∃x ∈ X)(y ∈ F ({x}) & x ∈ A)

iff y ∈
∪
x∈A

F ({x}) = F (
∪
x∈A

{x}) = F (A).

y ∈ [[RF ]]
∗(A) iff (∀x ∈ X)(x ∈ Ac → (x, y) ∈ RF ))

iff (∀x ∈ X)((x, y) ∈ Rc
F → x ∈ A))

iff (∀x ∈ X)(y ∈ F ({x}) → x ∈ A))

iff
(
(∃x ∈ X)(y ∈ F ({x}) & x ∈ Ac)

)c

iff y ∈
( ∪

x∈Ac

F ({x}))
)c

iff y ∈
(
F (

∪
x∈Ac

{x})
)c

= (F (Ac))c = F ∂(A).
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(3)

(x, y) ∈ R⟨⟨R⟩⟩∗ iff y ∈ ⟨⟨R⟩⟩∗({x})c

iff
(
(∃z ∈ X)((z, y) ∈ Rc & z ∈ {x}

)c

iff (x, y) ∈ (Rc)c = R.

�

Theorem 3.4. Let R ∈ P (X × Y ) be a relation.
(1) [[R]] is a sufficiency operator and ⟨⟨R⟩⟩ is a co-sufficiency oper-

ator with ⟨⟨R⟩⟩(A) = ([[R]](Ac))c = [[R]]∂(A) for each A ∈ P (X).
(2) If F : P (X) → P (Y ) is a sufficiency operator on P (X), there

exists a unique relation RF ∈ P (X × Y ) such that [[RF ]] = F and
⟨⟨RF ⟩⟩ = F ∂ where (x, y) ∈ RF iff y ∈ F ({x}).

(3) R[[R]] = R.

Proof. (1) We have ⟨⟨R⟩⟩(A) = ([[R]](Ac))c = [[R]]∂(A) from:

x ∈ ([[R]](Ac))c iff
(
(∀y ∈ X)(y ∈ Ac → (x, y) ∈ R)

)c

iff
(
(∀y ∈ X)((x, y) ∈ Rc & y ∈ Ac)c

)c

iff (∃y ∈ X)((x, y) ∈ Rc & y ∈ Ac)

iff x ∈ ⟨⟨R⟩⟩(A).

(2) Since F (
∪

x∈A{x}) =
∩

x∈A F ({x}), we have

y ∈ [[RF ]](A) iff (∀x ∈ X)(x ∈ A → (x, y) ∈ RF )

iff (∀x ∈ X)(x ∈ A → y ∈ F ({x}))

iff y ∈
∩
x∈A

F ({x}) = F (
∪
x∈A

{x}) = F (A).

y ∈ ⟨⟨RF ⟩⟩(A) iff (∃x ∈ X)((x, y) ∈ Rc
F & x ∈ Ac)

iff (∃x ∈ X)(y ∈ F ({x})c & x ∈ Ac)

iff y ∈
∪

x∈Ac

F ({x})c = (
∩

x∈Ac

F ({x}))c

iff y ∈ (F (
∪

x∈Ac

{x}))c = (F (Ac))c = F ∂(A).
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(3)

(x, y) ∈ R[[R]] iff (∀z ∈ X)(z ∈ {x} → (z, y) ∈ R)

iff (x, y) ∈ R.

�

Theorem 3.5. Let R ∈ P (X × Y ) be a relation.
(1) [R]∗ is a sufficiency operator and ⟨R⟩∗ is a co-sufficiency operator

with [R]∗(A) = (⟨R⟩∗(Ac))c.
(2) If F : P (X) → P (Y ) is a sufficiency operator on P (X), there

exists a unique relation RF ∈ P (X × Y ) such that [RF ]
∗ = F and

⟨RF ⟩∗ = F ∂ where (x, y) ∈ RF iff y ∈ F ({x})c.
(3) R[R]∗ = R.

Proof. (1)

y ∈ (⟨R⟩∗(Ac))c iff
(
(∃x ∈ X)(x ∈ A & (x, y) ∈ R)

)c

iff (∀x ∈ X)((x, y) ∈ R → x ∈ Ac)

iff y ∈ [R]∗(A).

(2)

y ∈ [RF ]
∗(A) iff (∀x ∈ X)((x, y) ∈ RF → x ∈ Ac)

iff (∀x ∈ X)(x ∈ A → y ∈ F ({x}))

iff y ∈
∩
x∈A

F ({x}) = F (
∪
x∈A

{x}) = F (A).

y ∈ ⟨RF ⟩∗(A) iff (∃x ∈ X)((x, y) ∈ RF & x ∈ Ac)

iff (∃x ∈ X)(y ∈ F ({x})c & x ∈ Ac)

iff
(
(∀x ∈ X)(x ∈ Ac → y ∈ F ({x}))

)c

iff y ∈
( ∩

x∈Ac

(F ({x}))
)c

iff y ∈
(
F (

∪
x∈Ac

{x})
)c

= (F (Ac))c

iff y ∈ F ∂(A).
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(3)

(x, y) ∈ R[R]∗ iff y ∈ [R]∗({x}c)c

iff
(
(∀z ∈ X)((z, y) ∈ R → z ∈ {x}c)

)c

iff (x, y) ∈ R.

�

Theorem 3.6. Let R ⊂ P (X × Y ) be a relation.
(1) If F : P (X) → P (Y ) is a necessity operator on P (X), there

exists a unique relation RF ∈ P (X × Y ) such that [RF ] = F and
⟨RF ⟩ = F ∂ where (x, y) ∈ RF iff y ∈ F ({x}c)c.

(2) R[R] = R.

Proof. (1)

y ∈ [RF ](A) iff (∀x ∈ X)((x, y) ∈ RF → x ∈ A)

iff (∀x ∈ X)(y ∈ F ({x}c)c → x ∈ A)

iff (∀x ∈ X)(x ∈ Ac → y ∈ F ({x}c))

iff y ∈
∩

x∈Ac

F ({x}c) = F (
∩

x∈Ac

{x}c) = F (A).

y ∈ ⟨RF ⟩(A) iff (∃x ∈ X)((x, y) ∈ RF & x ∈ A)

iff (∃x ∈ X)(y ∈ F ({x}c)c & x ∈ A)

iff
(
(∀x ∈ X)(x ∈ A → y ∈ F ({x}c))

)c

iff y ∈
( ∩

x∈A

F ({x}c)
)c

=
(
F (

∩
x∈A

{x}c)
)c

iff y ∈ F (Ac)c iff y ∈ F ∂(A).

(2)

(x, y) ∈ R[R] iff y ∈ [R]({x}c)c

iff
(
(∀z ∈ X)((z, y) ∈ R → z ∈ {x}c)

)c

iff (x, y) ∈ R.

�
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Theorem 3.7. Let R ∈ P (X × Y ) be a relation.
(1) If F : P (X) → P (Y ) is a co-sufficiency operator on P (X), there

exists a unique relation RF ∈ P (X × Y ) such that ⟨⟨RF ⟩⟩ = F and
[[RF ]] = F ∂ where (x, y) ∈ RF iff y ∈ F ({x}c)c.

(2) R⟨⟨RF ⟩⟩ = R.

Proof. (1)

y ∈ ⟨⟨RF ⟩⟩(A) iff (∃x ∈ X)((x, y) ∈ Rc
F & x ∈ Ac)

iff (∃x ∈ X)(y ∈ F ({x}c) & x ∈ Ac)

iff y ∈
∪

x∈Ac

F ({x}c) = F (
∩

x∈Ac

{x}c) = F (A).

y ∈ [[RF ]](A) iff (∀x ∈ X)(x ∈ A → (x, y) ∈ RF )

iff (∀x ∈ X)(x ∈ A → y ∈ F ({x}c)c)

iff
(
(∃x ∈ X)(x ∈ A & y ∈ F ({x}c))

)c

iff y ∈
( ∪

x∈A

F ({x}c)
)c

iff y ∈
(
F (

∩
x∈A

{x}c)
)c

iff y ∈ F (Ac)c = F ∂(A).

(2)

(x, y) ∈ R⟨⟨R⟩⟩ iff y ∈ ⟨⟨R⟩⟩({x}c)c

iff
(
(∃z ∈ X)((z, y) ∈ Rc & z ∈ {x}c)

)c

iff (x, y) ∈ R.

�

Theorem 3.8. Let R ∈ P (X × Y ) be a relation.
(1) If F : P (X) → P (Y ) is a necessity operator on P (X), there

exists a unique relation RF ∈ P (X × Y ) such that [[RF ]]
∗ = F and

⟨⟨RF ⟩⟩∗ = F ∂ where (x, y) ∈ RF iff y ∈ F ({x}c).
(2) R[[RF ]]∗ = R.
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Proof. (1)

y ∈ [[RF ]]
∗(A) iff (∀x ∈ X)(x ∈ Ac → (x, y) ∈ RF )

iff (∀x ∈ X)(x ∈ Ac → y ∈ F ({x}c))

iff y ∈
∩

x∈Ac

F ({x}c) = F (
∩

x∈Ac

{x}c) = F (A).

x ∈ ⟨⟨RF ⟩⟩∗(A) iff (∃x ∈ X)((x, y) ∈ Rc
F & x ∈ A)

iff (∃x ∈ X)(y ∈ F ({x}c)c & x ∈ A)

iff
(
(∀x ∈ X)(x ∈ A → y ∈ F ({x}c))

)c

iff y ∈
( ∩

x∈A

F ({x}c)
)c

=
(
F (

∩
x∈A

{x}c)
)c

iff y ∈ F (Ac)c iff y ∈ F ∂(A).

(2)

(x, y) ∈ R[[RF ]]∗ iff y ∈ [[RF ]]
∗({x}c)

iff (∀z ∈ X)(z ∈ {x} → (z, y) ∈ R)

iff (x, y) ∈ R.

�

Theorem 3.9. Let R ∈ P (X × Y ) be a relation.
(1) If F : P (X) → P (Y ) is a co-sufficiency operator on P (X), there

exists a unique relation RF ∈ P (X × Y ) such that ⟨RF ⟩∗ = F and
[RF ]

∗ = F ∂ where (x, y) ∈ RF iff y ∈ F ({x}c).
(2) R⟨RF ⟩∗ = R.

Proof. (1)

y ∈ ⟨RF ⟩∗ iff (∃x ∈ X)((x, y) ∈ RF & x ∈ Ac)

iff (∃x ∈ X)(y ∈ F ({x}c) & x ∈ Ac)

iff y ∈
∪

x∈Ac

F ({x}c) = F (
∩

x∈Ac

{x}c) = F (A).
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y ∈ [RF ]
∗(A) iff (∀x ∈ X)(x ∈ (x, y) ∈ RF → x ∈ Ac)

iff
(
(∃x ∈ X)(x ∈ A & (x, y) ∈ RF )

)c

iff
(
(∃x ∈ X)(x ∈ A & y ∈ F ({x}c))

)c

iff y ∈
( ∪

x∈A

F ({x}c)
)c

iff y ∈
(
F (

∩
x∈A

{x}c)
)c

iff y ∈ F (Ac)c = F ∂(A).

(2)

(x, y) ∈ R⟨RF ⟩∗ iff y ∈ ⟨RF ⟩∗({x}c)

iff
(
(∃z ∈ X)((z, y) ∈ Rc & z ∈ {x})

)c

iff (x, y) ∈ R.

�

Example 3.10. LetX = {a, b, c} and Y = {x, y, z} be a set. Define
F,G : P (X) → P (Y ) as

F ({a}) = ∅, F ({b}) = {x}, F ({c}) = {y, z},

G({a}) = X,G({b}) = {x, y}, G({c}) = {y, z},

H({b, c}) = {x},H({c, a}) = {x, y},H({a, b}) = {z}.

(1) If F is a modal operator, then, by Theorem 2.3,

F (A) =


∅, if A ∈ {∅, {a}},
{x}, if A ∈ {{b}, {a, b}},
{y, z}, if A ∈ {{c}, {a, c}},
Y, if A ∈ {{b, c}, X}.
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Since (x, y) ∈ RF iff y ∈ F ({x}), we obtain:

RF = {(b, x), (c, y), (c, z)}, ⟨RF ⟩ = F, [RF ] = F ∂ .

(2) If F is a modal operator, then, by Theorem 3.3, we obtain F as
same in (1). Since (x, y) ∈ RF iff y ∈ F ({x})c, we obtain:

RF = {(a, x), (a, y), (a, z), (b, y), (b, z), (c, x)},

⟨⟨RF ⟩⟩∗ = F, [[RF ]]
∗ = F ∂ .

(3) If G is a sufficiency operator, then, by Theorem 3.4,

G(A) =


Y, if A ∈ {∅, {a}},
{x, y}, if A ∈ {{b}, {a, b}},
{y, z}, if A ∈ {{c}, {a, c}},
{y}, if A ∈ {{b, c}, X}.

Since (x, y) ∈ RG iff y ∈ G({x}), we obtain:

RG = {(a, x), (a, y), (a, z), (b, x), (b, y), (c, y), (c, z)},

[[RG]] = G, ⟨⟨RG⟩⟩ = G∂ .

(4) If G is a sufficiency operator, then, by Theorem 3.5, we obtain
G as same in (3). Since (x, y) ∈ RG iff y ∈ G({x})c, we obtain:

RG = {(b, z), (c, x)}, [RG]
∗ = G, ⟨RG⟩∗ = G∂ .

(5) If H is a necessity operator, then, by Theorem 3.6,

H(A) =



∅, if A ∈ {∅, {a}, {b}},
{x}, if A ∈ {{c}, {b, c}},
{x, y}, if A = {a, c},
{z}, if A = {a, b},
Y, if A = X.
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Since (x, y) ∈ RH iff y ∈ H({x}c)c, we obtain:

RH = {(a, y), (a, z), (b, z), (c, x), (c, y)}, [RH ] = H, ⟨RH⟩ = H∂ .

(6) If H is a necessity operator, then, by Theorem 3.8, we obtain H
as same in (5). Since (x, y) ∈ RH iff y ∈ H({x}c), we obtain:

RH = {(a, x), (b, x), (b, y), (c, z)}, [[RH ]]∗ = H, ⟨⟨RH⟩⟩∗ = H∂ .

(7) If H is a co-sufficiency operator, then, by Theorem 3.7, we have:

H(A) =



∅, if A = X,

{x, y}, if A ∈ {{c}, {a, c}},
{x, z}, if A = {b},
{z}, if A = {a, b},
{x}, if A = {b, c},
Y, if A ∈ {∅, {a}}.

Since (x, y) ∈ RH iff y ∈ H({x}c)c, we obtain:

RH = {(a, y), (a, z), (b, z), (c, x), (c, y)}, ⟨⟨RH⟩⟩ = H, [[RH ]] = H∂ .

(8) IfH is a co-sufficiency operator, then, by Theorem 3.9, we obtain
H as same in (7). Since (x, y) ∈ RH iff y ∈ H({x}c), we obtain:

RH = {(a, x), (b, x), (b, y), (c, z)}, ⟨RH⟩∗ = H, [RH ]∗ = H∂ .
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