References
- Adams, L., Kampe, S. and Christodoulou, L. (1990), "Characterization of rapidly solidified ceramic-titanium aluminide powders", Int. J. Powder Metall., 26(2), 105-114.
- Appel, F., Oehring, M. and Wagner, R. (2000), "Novel design concepts for gamma-based titanium alumnide alloys", Intermetallics, 8(9-11), 1283-1312. https://doi.org/10.1016/S0966-9795(00)00036-4
- ASTM, (1997), Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA.
- Cerreta, E. and Mahajan, S. (2001), "Formation of deformation twins in TiAl", Acta Mater., 49(18), 3803-3809. https://doi.org/10.1016/S1359-6454(01)00264-6
- Cheng, T. and McLean, M. (1997), "Characterization of TiAl intermetallic rods produced from elemental powders by hot extrusion reaction synthesis (HERS)", J. Mater. Sci., 32(23), 6255-6261. https://doi.org/10.1023/A:1018689111498
- Chen, Y.Y., Yua, H.B., Zhang, D.L. and Chaia L.H. (2009), "Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy", Mater. Sci. Eng.: A., 525, 166-173. https://doi.org/10.1016/j.msea.2009.06.056
- Christop, U., Appel, F. and Wagner, R. (1997), "High-temperature ordered intermetallic alloys VII", Mater. Res. Sot. Symp. Proc., Pittsburgh, 460, 207-212.
- Das, G., Kestler, H. Clemens, H., and Bartolotta, P.A. (2004), "Sheet gamma TiAl: status and opportunities", J. Mater., 56(11), 42-45.
-
Djanarthany, S., Viala, J.C. and Bouix, J. (2001), "An overview of monolithic titanium aluminides based on
$Ti_3Al$ and TiAl", Mater. Chem. Phys., 72(3), 301-319. https://doi.org/10.1016/S0254-0584(01)00328-5 - Draper, L.S. Das, G. Locci, I. Whittenberger, J.D. Lerch, B.A. and Kestler, H. (Ed.) (2003), Gamma Titanium Aluminides, Kim, Y.W. Helmut, C. and Rosenberger, A.H., TMS, PA.
- Froes, F.H., Suryanarayana, C. and Eliezer, D. (1992), "Review synthesis, properties and applications of titanium aluminides", J. Mater. Sci., 27(19), 5113-5140. https://doi.org/10.1007/BF02403806
- Froes, F.H. and Suryanarayana, C. (1995), Phys. Metal. Process. Intermetallics Compounds. Chapman and Hall, NY.
- Fu, E., Rawlings, R.D. and McShane, H.B. (2001), "Reaction synthesis of titanium aluminides", J. Mater. Sci., 36(23), 5537-5542. https://doi.org/10.1023/A:1012540927009
- Gerling, R., Bartels, A. and Clemens, H. (2004), "Structural characterization and tensile properties of a high Nb containing gamma TiAl sheet obtained by powder metallurgical processing", Intermetallics, 12(3), 275-280. https://doi.org/10.1016/j.intermet.2003.10.005
- Hibbeler, R.C. (1997), Mech. Mater. 3rd Edition, Prentice Hall, Upper Saddle River, NJ.
- Hitoshi, H. and Sun, Z. (2003), "Fabrication of TiAl alloys by MA-PDS process and the mechanical properties", Intermetallics, 11(8), 825-834. https://doi.org/10.1016/S0966-9795(03)00081-5
- Immarigeon, J.P., Holt, R.T., Koul, A.K., Zhao, L., Wallace, L. and Beddoes, J.C. (1995), "Lightweight materials for aircraft applications", Mater. Charect., 35(1), 41-67. https://doi.org/10.1016/1044-5803(95)00066-6
- Kim, Y.W. (1989), "Intermetallic alloys based on gamma titanium aluminides", J. Mater., 41(7), 24-30.
- Kim, Y.W. (1991), "Microstructural evolution and mechanical properties of a forged gamma titanium alloy", Acta Metall. Mater., 40(6), 1121-1133.
- Kim, Y.W. (1995), "Effects of microstructure on the deformation and fracture of gamma-TiAl alloys", Mater. Sci. Eng., A192/193, 519-533.
- Kim, Y.W. (1998), "Strength and ductility in TiAl alloys", Intermetallics, 6(7-8), 623-628. https://doi.org/10.1016/S0966-9795(98)00037-5
- Kim, Y.W. and Dimiduk, D. (1991), "Progress in the understanding of gamma titanium aluminides", JOM, 43(8), 40-47. https://doi.org/10.1007/BF03221103
- Krause, P., Bartolotta, A. and David, L. (1999), "Titanium aluminide applications in the high speed civil transport", Proceedings of International Symposium on Gamma Titanium Aluminides, CA, USA.
- Lipsitt, H.A. (1975), "The deformation and fracture of TiAl at elevated temperatures", Metall. Mater. Trans. A, 6(11), 1991-1996. https://doi.org/10.1007/BF03161822
- Lu, X., He, X.B., Zhang, B., Zhang, L., Qu, X.H. and Guo, Z.X. (2009), "Microstructure and mechanical properties of a spark plasma sintered Ti-45Al-8.5Nb-0.2W-0.2B-0.1Y alloy", Intermetallics, 17(10), 840-846. https://doi.org/10.1016/j.intermet.2009.03.013
- Marketz, W.T., Fischer, F.D., Kauffmann, F., Dehm, G., Bidlingmaier, T., Wanner, A. and Clemens, H. (2002), "On the role of twinning during room temperature deformation of gamma-TiAl based alloys", Mater. Sci. Eng., 331, 177-183.
- Prasad, U. and Chaturvedi, M.C. (2004), "Grain coarsening in Ti-45Al based titanium aluminides at supertransus temperature and subsequent lamellar structure formation", Mater. Sci. Tech., 20(1), 87-92. https://doi.org/10.1179/174328413X13789824293740
- Rivard, J. (2005), "Development of a finite volume model for the high-density infrared processing of gamma-TiAl thin-gage sheet", PhD Thesis, University of Cincinnati, Cincinnati, OH.
- Sahay, S.S., Ravichandran, K.S., Atri, R., Chen, B. and Rubin, J. (1999), "Evolution of microstructure and phases in in-situ processed Ti-TiB composites containing high volume fractions of TiB whiskers", J. Mater. Res., 14(11), 4214-4221. https://doi.org/10.1557/JMR.1999.0571
- Sauthoff, G. (1995), Intermetallics, Wiley-VCH, Weinheim, New York.
- Schafrik, R.E. (1977), "Dynamic elastic moduli of titanium aluminides", Metall. Trans. A., 8(6), 1003-1006. https://doi.org/10.1007/BF02661586
- Shazly, M., Prakash, V. and Draper, S. (2009), "Dynamic fracture initiation toughness of a gamma (Met-PX) titanium aluminide at elevated temperatures", Metall. Mater. Trans. A., 40(6), 1400-1412. https://doi.org/10.1007/s11661-009-9823-3
-
Simpkins, R., Rourke, M., Bieler, T. and McQuay, P.A. (2007), "The effects of HIP pore closure and age hardening on primary creep and tensile property variations in a TiAl
$XD^{TM}$ XDTM alloy with 0.1 wt.% carbon", Mater. Sci. Eng., 463(1-2), 208-215. https://doi.org/10.1016/j.msea.2006.09.114 - Soboyejo, W.O., Ye, F. and Srivatsan, T.S. (1997), "The fatigue and fracture behavior of a gamma-titanium alumnide intermtallic: Influence of ductile phase reinforcement", Eng. Fract. Mech., 56(3), 379-395. https://doi.org/10.1016/S0013-7944(96)00101-4
- Soboyejo, W.O., Shen, W., Lou, J., Mercer, C., Sinha, V. and Soboyejo, A.B.O. (2004), "Probabilistic framework for the modeling of fatigue in cast lamellar gamma-based titanium aluminides", Mech. Mater., 36(1-2), 177-197. https://doi.org/10.1016/S0167-6636(03)00038-3
- Sommer, A.W. and Keijzers, G.C. (Ed.) (2003), Gamma Titanium Aluminides, Y.W. Kim, H. Clemens and A.H. Rosenberger, TMS, PA.
- Srivatsan, T.S., Soboyejo, W.O. and Strangwood, M. (1995). "Cyclic fatigue and fracture behavior of a gamma-titanium aluminide intermetallic", Eng. Fract. Mech., 52(1), 107-120. https://doi.org/10.1016/0013-7944(94)00330-K
- Sun, Y.Q. (1999). Gamma Titanium Aluminides. [Edition] Kim, Y.W., TMS, PA.
- Sun, Z. and Hashimoto, H. (2003), "Fabrication of TiAl alloys by MA-PDS process and the mechanical properties", Intermetallics, 11(8), 823-834.
- Szewczak, E., Paszula, J., Leonov, A.V. and Matyja, H. (1997), "Explosive consolidation of mechanically alloyed Ti-Al alloys", Mater. Sci. Eng. A., 226/228(15), 115-118. https://doi.org/10.1016/S0921-5093(97)80030-5
- Voice, W. (1999), "The future of gamma-titanium alumnides by rolls royce", Aircr. Eng. Aerosp. Tech., 71(4), 337-340. https://doi.org/10.1108/00022669910371031
- Voice, W., Henderson, M., Shelton, E. and Wu, X. (2005), "Gamma titanium aluminide, TNB", Intermetallics, 13(9), 959-964. https://doi.org/10.1016/j.intermet.2004.12.021
- Woo, J.C., Varma, S.K. and Mahapatra, R.N. (2003), "Oxidation behavior and transmission electron microscope characterization of Ti-44Al-xNb-2(Ta,Zr) alloys", Metall. Mater. Trans. A, 34(10), 2263-2271. https://doi.org/10.1007/s11661-003-0290-y
- Yolton, C.F. Kim, Y.W. and Habel, U. (Ed.) (2003), Gamma Titanium Aluminides, Kim, Y.W., Helmut, C. and Rosenberger, A.H., TMS, PA.
- Zhang, W., Liu, Y., Liu, B. and Huang, B.Y. (2011), "Comparative assessment of microstructure and compressive behaviours of PM TiAl alloy prepared by HIP and Pseudo-HIP technology", Powder Metall., 54(2), 133-141.
Cited by
- Mechanical properties of Al/Al2O3and Al/B4C composites vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.263
- Porous γ-TiAl Structures Fabricated by Electron Beam Melting Process vol.6, pp.12, 2016, https://doi.org/10.3390/met6010025
- Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting vol.10, pp.2, 2017, https://doi.org/10.3390/ma10020211