References
- Buhmann, M.D. (2003), Radial basis functions: Theory and implementations, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge.
- Camilli, F., Grüne, L. and Wirth, F. (2008), "Control Lyapunov functions and Zubov's method", SIAM J. Contr. Opt., 47, 301-326. https://doi.org/10.1137/06065129X
- Chesi, G. (2007), "Estimating the domain of attraction via union of continuous families of Lyapunov estimates", Syst. Contr. Let., 56, 326-333. https://doi.org/10.1016/j.sysconle.2006.10.012
- Chesi, G., Garulli, A., Tesi, A. and Vicino, A. (2005), "LMI-based computation of optimal quadratic Lyapunov functions for odd polynomial systems", Int. J. Robust Nonlin. Contr., 15, 35-49. https://doi.org/10.1002/rnc.967
- Davison, E.J. and Kurak, E.M. (1971), "A computational method for determining quadratic Lyapunov functions for non-linear systems", Automatica, 7, 627-636. https://doi.org/10.1016/0005-1098(71)90027-6
- Dubljevi , S. and Kazantzis, N. (2002), "A new Lyapunov design approach for nonlinear systems based on Zubov's method", Automatica, 38, 1999-2007. https://doi.org/10.1016/S0005-1098(02)00110-3
- Fermín Guerrero-Sanchez, W., Guerrero-Castellanos, J.F. and Alexandrov, V.V. (2009), "A computational method for the determination of attraction regions", 6th Int. Conf. on Electrical Eng., Computing Sci. and Automatic Cont. (CCE 2009), 1-7.
- Genesio, R., Tartaglia, M. and Vicino, A. (1985), "On the estimation of asymptotic stability regions: State of the art and new proposals", IEEE T. Automat. Contr., 30, 747-755. https://doi.org/10.1109/TAC.1985.1104057
- Giesl, P. (2007), Construction of global Lyapunov functions using radial basis functions, Lecture Notes in Mathematics, Vol. 1904, Springer, Berlin.
- Giesl, P. (2008), "Construction of a local and global Lyapunov function using radial basis functions", IAM J. Appl. Math., 73, 782-802. https://doi.org/10.1093/imamat/hxn018
- Giesl, P. and Wendland, H. (2011), "Numerical determination of the basin of attraction for exponentially asymptotically autonomous dynamical systems", Nonlinear Anal., 74, 3191-3203. https://doi.org/10.1016/j.na.2011.01.032
- Gilsinn, D.E. (1975), "The method of averaging and domains of stability for integral manifolds", SIAM J. Appl. Math., 29, 628-660. https://doi.org/10.1137/0129052
- Grosman, B. and Lewin, D.R. (2009), "Lyapunov-based stability analysis automated by genetic programming", Automatica, 45, 252-256. https://doi.org/10.1016/j.automatica.2008.07.014
- Hachicho, O. (2007), "A novel LMI-based optimization algorithm for the guaranteed estimation of the domain of attraction using rational Lyapunov functions", J. Frank. Instit., 344, 535-552. https://doi.org/10.1016/j.jfranklin.2006.02.032
- Hafstein, S. (2005), "A constructive converse Lyapunov theorem on asymptotic stability for nonlinear autonomous ordinary differential equations", Dyn. Syst., 20, 281-299. https://doi.org/10.1080/14689360500164873
- Hetzler, H., Schwarzer, D. and Seemann, W. (2007), "Analytical investigation of steady-state stability and Hopfbifurcations occurring in sliding friction oscillators with application to low-frequency disc brake noise", Commun. Nonlin. Sci. Numer. Smul., 12, 83-99. https://doi.org/10.1016/j.cnsns.2006.01.007
- Johansen, T.A. (2000), "Computation of Lyapunov functions for smooth nonlinear systems using convex optimization", Automatica, 36, 1617-1626. https://doi.org/10.1016/S0005-1098(00)00088-1
- Kaslik, E., Balint, A.M. and Balint, St. (2005a), "Methods for determination and approximation of the domain of attraction", Nonlinear Anal., 60, 703-717. https://doi.org/10.1016/j.na.2004.09.046
- Kaslik, E., Balint, A.M., Grigis, A. and Balint, St. (2005b), "Control procedures using domains of attraction", Nonlinear Anal., 63, e2397-e2407. https://doi.org/10.1016/j.na.2005.02.073
- Khalil, H.K. (2002), Nonlinear systems (3rd Ed.), Prentice-Hall.
- Kormanik, J. and Li, C.C. (1972), "Decision surface estimate of nonlinear system stability domain by Lie series method", IEEE T. Automat. Contr., 17, 666-669. https://doi.org/10.1109/TAC.1972.1100088
- Lasserre, J.B. (2001), "Global optimization with polynomials and the problem of moments", SIAM J. Opt., 11, 796-817. https://doi.org/10.1137/S1052623400366802
- Lewis, A.P. (2002), "An investigation of stability in the large behaviour of a control surface with structural nonlinearities in supersonic flow", J. Sound Vib., 256, 725-754. https://doi.org/10.1006/jsvi.2002.5018
- Lewis, A.P. (2009), "An investigation of stability of a control surface with structural nonlinearities in supersonic flow using Zubov's methos", J. Sound Vib., 325, 338-361. https://doi.org/10.1016/j.jsv.2009.03.008
- Margolis, S.G. and Vogt, W.G. (1963), "Control engineering applications of V. I. Zubov's construction procedure for Lyapunov functions", IEEE T. Automat. Contr., 8, 104-113. https://doi.org/10.1109/TAC.1963.1105553
- O'Shea, R.P. (1964), "The extension of Zubov's method to sampled data control systems described by nonlinear autonomous difference equations", IEEE T. Automat. Contr., 9, 62-70. https://doi.org/10.1109/TAC.1964.1105623
- Pavlovi , R., Kozi , P., Rajkovi , P. and Pavlovi , I. (2007), "Dynamic stability of a thin-walled beam subjected to axial loads and end moments", J. Sound Vib., 301, 690-700. https://doi.org/10.1016/j.jsv.2006.10.032
- Peet, M.M. (2009), "Exponentially stable nonlinear systems have polynomial Lyapunov functions on bounded regions", IEEE T. Automat. Contr., 54, 979-987. https://doi.org/10.1109/TAC.2009.2017116
- Ralston, A. and Rabinowitz, P. (1978), A first course in numerical analysis (2nd Ed.), McGraw-Hill, New York
- Rezaiee-Pajand, M. and Alamatian, J. (2008), "Nonlinear dynamic analysis by dynamic relaxation method", Struct. Eng. Mech., 28, 549-570. https://doi.org/10.12989/sem.2008.28.5.549
- Rezaiee-Pajand, M. and Alamatian, J. (2010), "The dynamic relaxation method using new formulation for fictitious mass and damping", Struct. Eng. Mech., 34, 109-133. https://doi.org/10.12989/sem.2010.34.1.109
- Sophianopoulos, D.S. (1996), "Static and dynamic stability of a single-degree-of-freedom autonomous system with distinct critical points", Struct. Eng. Mech., 4, 529-540. https://doi.org/10.12989/sem.1996.4.5.529
- Sophianopoulos, D.S. (2000), "New phenomena associated with the nonlinear dynamics and stability of autonomous damped systems under various types of loading", Struct. Eng. Mech., 9, 397-416. https://doi.org/10.12989/sem.2000.9.4.397
- Tan, W. (2006), "Nonlinear control analysis and synthesis using sum-of-squares programming", PhD Dissertation, University of California, Berkeley, California.
- Tan, W. and Packard, A. (2008), "Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming", IEEE T. Automat. Contr., 53, 565-571. https://doi.org/10.1109/TAC.2007.914221
- Tylikowski, A. (2005), "Liapunov functionals application to dynamic stability analysis of continuous systems", Nonlinear Anal., 63, e169-e183. https://doi.org/10.1016/j.na.2005.02.083
- Vannelli, A. and Vidyasagar, M. (1985), "Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems", Automatica, 21, 69-80. https://doi.org/10.1016/0005-1098(85)90099-8
- Wendland, H. (2005), Scattered data approximation, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge.
- Wiggins, S. (2003), Introduction to applied nonlinear dynamical systems and chaos (2nd Ed.), Springer, New York.
- Yang, X.D., Tang, Y.Q., Chen, L.Q. and Lim, C.W. (2010), "Dynamic stability of axially accelerating Timoshenko beam: Averaging method", Euro. J. Mech. - A/Solids, 29, 81-90. https://doi.org/10.1016/j.euromechsol.2009.07.003
- Zienkiewicz, O.C., and Taylor, R.L. (2000), The finite element method, Vol. 1: The basis (5th Ed.), Butterworth- Heinemann, Oxford.
Cited by
- Review on computational methods for Lyapunov functions vol.20, pp.8, 2015, https://doi.org/10.3934/dcdsb.2015.20.2291
- Revised CPA method to compute Lyapunov functions for nonlinear systems vol.410, pp.1, 2014, https://doi.org/10.1016/j.jmaa.2013.08.014