DOI QR코드

DOI QR Code

Estimating the Region of Attraction via collocation for autonomous nonlinear systems

  • Rezaiee-Pajand, M. (Department of Civil Engineering, Ferdowsi University of Mashhad) ;
  • Moghaddasie, B. (Department of Civil Engineering, Ferdowsi University of Mashhad)
  • Received : 2010.12.08
  • Accepted : 2012.01.03
  • Published : 2012.01.25

Abstract

This paper aims to propose a computational technique for estimating the region of attraction (RoA) for autonomous nonlinear systems. To achieve this, the collocation method is applied to approximate the Lyapunov function by satisfying the modified Zubov's partial differential equation around asymptotically stable equilibrium points. This method is formulated for n-scalar differential equations with two classes of basis functions. In order to show the efficiency of the suggested approach, some numerical examples are solved. Moreover, the estimated regions of attraction are compared with two similar methods. In most cases, the proposed scheme can estimate the region of attraction more efficient than the other techniques.

Keywords

References

  1. Buhmann, M.D. (2003), Radial basis functions: Theory and implementations, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge.
  2. Camilli, F., Grüne, L. and Wirth, F. (2008), "Control Lyapunov functions and Zubov's method", SIAM J. Contr. Opt., 47, 301-326. https://doi.org/10.1137/06065129X
  3. Chesi, G. (2007), "Estimating the domain of attraction via union of continuous families of Lyapunov estimates", Syst. Contr. Let., 56, 326-333. https://doi.org/10.1016/j.sysconle.2006.10.012
  4. Chesi, G., Garulli, A., Tesi, A. and Vicino, A. (2005), "LMI-based computation of optimal quadratic Lyapunov functions for odd polynomial systems", Int. J. Robust Nonlin. Contr., 15, 35-49. https://doi.org/10.1002/rnc.967
  5. Davison, E.J. and Kurak, E.M. (1971), "A computational method for determining quadratic Lyapunov functions for non-linear systems", Automatica, 7, 627-636. https://doi.org/10.1016/0005-1098(71)90027-6
  6. Dubljevi , S. and Kazantzis, N. (2002), "A new Lyapunov design approach for nonlinear systems based on Zubov's method", Automatica, 38, 1999-2007. https://doi.org/10.1016/S0005-1098(02)00110-3
  7. Fermín Guerrero-Sanchez, W., Guerrero-Castellanos, J.F. and Alexandrov, V.V. (2009), "A computational method for the determination of attraction regions", 6th Int. Conf. on Electrical Eng., Computing Sci. and Automatic Cont. (CCE 2009), 1-7.
  8. Genesio, R., Tartaglia, M. and Vicino, A. (1985), "On the estimation of asymptotic stability regions: State of the art and new proposals", IEEE T. Automat. Contr., 30, 747-755. https://doi.org/10.1109/TAC.1985.1104057
  9. Giesl, P. (2007), Construction of global Lyapunov functions using radial basis functions, Lecture Notes in Mathematics, Vol. 1904, Springer, Berlin.
  10. Giesl, P. (2008), "Construction of a local and global Lyapunov function using radial basis functions", IAM J. Appl. Math., 73, 782-802. https://doi.org/10.1093/imamat/hxn018
  11. Giesl, P. and Wendland, H. (2011), "Numerical determination of the basin of attraction for exponentially asymptotically autonomous dynamical systems", Nonlinear Anal., 74, 3191-3203. https://doi.org/10.1016/j.na.2011.01.032
  12. Gilsinn, D.E. (1975), "The method of averaging and domains of stability for integral manifolds", SIAM J. Appl. Math., 29, 628-660. https://doi.org/10.1137/0129052
  13. Grosman, B. and Lewin, D.R. (2009), "Lyapunov-based stability analysis automated by genetic programming", Automatica, 45, 252-256. https://doi.org/10.1016/j.automatica.2008.07.014
  14. Hachicho, O. (2007), "A novel LMI-based optimization algorithm for the guaranteed estimation of the domain of attraction using rational Lyapunov functions", J. Frank. Instit., 344, 535-552. https://doi.org/10.1016/j.jfranklin.2006.02.032
  15. Hafstein, S. (2005), "A constructive converse Lyapunov theorem on asymptotic stability for nonlinear autonomous ordinary differential equations", Dyn. Syst., 20, 281-299. https://doi.org/10.1080/14689360500164873
  16. Hetzler, H., Schwarzer, D. and Seemann, W. (2007), "Analytical investigation of steady-state stability and Hopfbifurcations occurring in sliding friction oscillators with application to low-frequency disc brake noise", Commun. Nonlin. Sci. Numer. Smul., 12, 83-99. https://doi.org/10.1016/j.cnsns.2006.01.007
  17. Johansen, T.A. (2000), "Computation of Lyapunov functions for smooth nonlinear systems using convex optimization", Automatica, 36, 1617-1626. https://doi.org/10.1016/S0005-1098(00)00088-1
  18. Kaslik, E., Balint, A.M. and Balint, St. (2005a), "Methods for determination and approximation of the domain of attraction", Nonlinear Anal., 60, 703-717. https://doi.org/10.1016/j.na.2004.09.046
  19. Kaslik, E., Balint, A.M., Grigis, A. and Balint, St. (2005b), "Control procedures using domains of attraction", Nonlinear Anal., 63, e2397-e2407. https://doi.org/10.1016/j.na.2005.02.073
  20. Khalil, H.K. (2002), Nonlinear systems (3rd Ed.), Prentice-Hall.
  21. Kormanik, J. and Li, C.C. (1972), "Decision surface estimate of nonlinear system stability domain by Lie series method", IEEE T. Automat. Contr., 17, 666-669. https://doi.org/10.1109/TAC.1972.1100088
  22. Lasserre, J.B. (2001), "Global optimization with polynomials and the problem of moments", SIAM J. Opt., 11, 796-817. https://doi.org/10.1137/S1052623400366802
  23. Lewis, A.P. (2002), "An investigation of stability in the large behaviour of a control surface with structural nonlinearities in supersonic flow", J. Sound Vib., 256, 725-754. https://doi.org/10.1006/jsvi.2002.5018
  24. Lewis, A.P. (2009), "An investigation of stability of a control surface with structural nonlinearities in supersonic flow using Zubov's methos", J. Sound Vib., 325, 338-361. https://doi.org/10.1016/j.jsv.2009.03.008
  25. Margolis, S.G. and Vogt, W.G. (1963), "Control engineering applications of V. I. Zubov's construction procedure for Lyapunov functions", IEEE T. Automat. Contr., 8, 104-113. https://doi.org/10.1109/TAC.1963.1105553
  26. O'Shea, R.P. (1964), "The extension of Zubov's method to sampled data control systems described by nonlinear autonomous difference equations", IEEE T. Automat. Contr., 9, 62-70. https://doi.org/10.1109/TAC.1964.1105623
  27. Pavlovi , R., Kozi , P., Rajkovi , P. and Pavlovi , I. (2007), "Dynamic stability of a thin-walled beam subjected to axial loads and end moments", J. Sound Vib., 301, 690-700. https://doi.org/10.1016/j.jsv.2006.10.032
  28. Peet, M.M. (2009), "Exponentially stable nonlinear systems have polynomial Lyapunov functions on bounded regions", IEEE T. Automat. Contr., 54, 979-987. https://doi.org/10.1109/TAC.2009.2017116
  29. Ralston, A. and Rabinowitz, P. (1978), A first course in numerical analysis (2nd Ed.), McGraw-Hill, New York
  30. Rezaiee-Pajand, M. and Alamatian, J. (2008), "Nonlinear dynamic analysis by dynamic relaxation method", Struct. Eng. Mech., 28, 549-570. https://doi.org/10.12989/sem.2008.28.5.549
  31. Rezaiee-Pajand, M. and Alamatian, J. (2010), "The dynamic relaxation method using new formulation for fictitious mass and damping", Struct. Eng. Mech., 34, 109-133. https://doi.org/10.12989/sem.2010.34.1.109
  32. Sophianopoulos, D.S. (1996), "Static and dynamic stability of a single-degree-of-freedom autonomous system with distinct critical points", Struct. Eng. Mech., 4, 529-540. https://doi.org/10.12989/sem.1996.4.5.529
  33. Sophianopoulos, D.S. (2000), "New phenomena associated with the nonlinear dynamics and stability of autonomous damped systems under various types of loading", Struct. Eng. Mech., 9, 397-416. https://doi.org/10.12989/sem.2000.9.4.397
  34. Tan, W. (2006), "Nonlinear control analysis and synthesis using sum-of-squares programming", PhD Dissertation, University of California, Berkeley, California.
  35. Tan, W. and Packard, A. (2008), "Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming", IEEE T. Automat. Contr., 53, 565-571. https://doi.org/10.1109/TAC.2007.914221
  36. Tylikowski, A. (2005), "Liapunov functionals application to dynamic stability analysis of continuous systems", Nonlinear Anal., 63, e169-e183. https://doi.org/10.1016/j.na.2005.02.083
  37. Vannelli, A. and Vidyasagar, M. (1985), "Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems", Automatica, 21, 69-80. https://doi.org/10.1016/0005-1098(85)90099-8
  38. Wendland, H. (2005), Scattered data approximation, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge.
  39. Wiggins, S. (2003), Introduction to applied nonlinear dynamical systems and chaos (2nd Ed.), Springer, New York.
  40. Yang, X.D., Tang, Y.Q., Chen, L.Q. and Lim, C.W. (2010), "Dynamic stability of axially accelerating Timoshenko beam: Averaging method", Euro. J. Mech. - A/Solids, 29, 81-90. https://doi.org/10.1016/j.euromechsol.2009.07.003
  41. Zienkiewicz, O.C., and Taylor, R.L. (2000), The finite element method, Vol. 1: The basis (5th Ed.), Butterworth- Heinemann, Oxford.

Cited by

  1. Review on computational methods for Lyapunov functions vol.20, pp.8, 2015, https://doi.org/10.3934/dcdsb.2015.20.2291
  2. Revised CPA method to compute Lyapunov functions for nonlinear systems vol.410, pp.1, 2014, https://doi.org/10.1016/j.jmaa.2013.08.014