DOI QR코드

DOI QR Code

New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM

  • Dhananjaya, H.R. (Department of Civil Engineering, Nitte Meenakshi Institute of Technology) ;
  • Pandey, P.C. (Department of Civil Engineering, Indian Institute of Science) ;
  • Nagabhushanam, J. (Department of Aerospace Engineering, Indian Institute of Science) ;
  • Ibrahim, Zainah (Department of Civil Engineering, University of Malaya)
  • 투고 : 2010.09.10
  • 심사 : 2011.12.13
  • 발행 : 2012.01.25

초록

This paper presents a new nine-node Lagrangian quadrilateral plate bending element (MQP9) using the Integrated Force Method (IFM) for the analysis of thin and moderately thick plate bending problems. Three degrees of freedom: transverse displacement w and two rotations ${\theta}_x$ and ${\theta}_y$ are considered at each node of the element. The Mindlin-Reissner theory has been employed in the formulation which accounts the effect of shear deformation. Many standard plate bending benchmark problems have been analyzed using the new element MQP9 for various grid sizes via Integrated Force Method to estimate defections and bending moments. These results of the new element MQP9 are compared with those of similar displacement-based plate bending elements available in the literature. The results are also compared with exact solutions. It is observed that the presented new element MQP9 is free from shear locking and produced, in general, excellent results in all plate bending benchmark problems considered.

키워드

참고문헌

  1. Choi, C.K. and Park, Y.M. (1999), "Quadratic NMS Mindlin-plate-bending element", Int. J. Numer. Meth. Eng., 46(8), 1273-1289. https://doi.org/10.1002/(SICI)1097-0207(19991120)46:8<1273::AID-NME754>3.0.CO;2-N
  2. Choi, C.K., Lee, T.Y. and Chung, K.Y. (2002), "Direct modification for nonconforming elements with drilling DOF", Int. J. Numer. Meth. Eng., 55(12), 1463-1476. https://doi.org/10.1002/nme.550
  3. Chen, W.J. and Cheung, Y.K. (1987), "A new approach for the hybrid element method", Int. J. Numer. Meth. Eng., 24, 1697-1709. https://doi.org/10.1002/nme.1620240907
  4. Darylmaz, K. (2005), "An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates", Struct. Eng. Mech., 19(2), 199-215. https://doi.org/10.12989/sem.2005.19.2.199
  5. Darylmaz, K. and Kumbasar, N. (2006), "An 8-node assumed stress hybrid element for analysis of shells", Comput. Struct., 84, 1990-2000. https://doi.org/10.1016/j.compstruc.2006.08.003
  6. Dhananjaya, H.R., Pandey, P.C. and Nagabhushanam, J. (2009), "New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method", Struct. Eng. Mech. 33(4), 485-502. https://doi.org/10.12989/sem.2009.33.4.485
  7. Dimitris, K, Hung, L.T., and Atluri, S.N. (1984), "Mixed finite element models for plate bending analysis, A new element and its applications", Comput. Struct., 19(4), 565-581. https://doi.org/10.1016/0045-7949(84)90104-4
  8. Hughes, T.J.R. and Cohen, M. (1978), "The 'heterosis' finite element for plate bending", Comput. Struct., 9(5), 445-450. https://doi.org/10.1016/0045-7949(78)90041-X
  9. Kaljevic, I., Patnaik, S.N. and Hopkins, D.A. (1996), "Development of finite elements for two- dimensional structural analysis using Integrated Force Method", Comput. Struct., 59(4), 691-706. https://doi.org/10.1016/0045-7949(95)00294-4
  10. Kaljevic, I., Patnaik, S.N. and Hopkins, D.A. (1996), "Three dimensional structural analysis by Integrated Force Method", Comput. Struct., 58(5), 869-886. https://doi.org/10.1016/0045-7949(95)00171-C
  11. Kanber, B. and Bozkurt. Y. (2006), "Finite element analysis of elasto-plastic plate bending problems using transition rectangular plate elements", Acta Mechanica Sinica, 22, 355-365. https://doi.org/10.1007/s10409-006-0012-y
  12. Kaneko, L., Lawo, H. and Thierauf G. (1983), "On computational procedures for the force method", Int. J. Numer. Meth. Eng., 18, 1469-1495.
  13. Krishnam Raju, N.R.B. and Nagabhushanam, J. (2000), "Non-linear structural analysis using integrated force method", Sadhana J., 25(4), 353-365. https://doi.org/10.1007/BF03029720
  14. Lee, S.W. and Wong, S.C. (1982), "Mixed formulation finite elements for Mindlin theory plate bending", Int. J. Numer. Meth. Eng., 18, 1297-1311. https://doi.org/10.1002/nme.1620180903
  15. Liu, J., Riggs, H.R. and Tessler, A. (2000), "A four node shear-deformable shell element developed via explicit Kirchhoff constraints", Int. J. Numer. Meth. Eng., 49, 1065-1086. https://doi.org/10.1002/1097-0207(20001120)49:8<1065::AID-NME992>3.0.CO;2-5
  16. Morley, L.S.D. (1963), Skew plates and structures, Pergamon press, Oxford.
  17. Nagabhushanam, J. and Patnaik, S.N. (1990), "General purpose program to generate compatibility matrix for the integrated force method", AIAA J., 28, 1838-1842. https://doi.org/10.2514/3.10488
  18. Nagabhushanam, J. and Srinivas, J. (1991), "Automatic generation of sparse and banded compatibility matrix for the Integrated Force Method", Comput. Mech. '91, Int. Conference on Comput. Eng. Scei., Patras, Greece.
  19. NISA Software and manual (Version 9.3)
  20. Ozgan, K. and Daloglu, A.T. (2007), "Alternate plate finite elements for the analysis of thick plates on elastic foundations", Struct. Eng. Mech., 26(1), 69-86. https://doi.org/10.12989/sem.2007.26.1.069
  21. Patnaik, S.N. (1973), "An integrated force method for discrete analysis", Int. J. Numer. Meth. Eng., 41, 237-251.
  22. Patnaik, S.N. (1986), "The variational energy formulation for the Integrated Force Method", AIAA J., 24,129- 137. https://doi.org/10.2514/3.9232
  23. Patnaik, S.N., Berke, L. and Gallagher, R.H. (1991), "Integrated force method verses displacement method for finite element analysis", Comput. Struct., 38(4), 377-407. https://doi.org/10.1016/0045-7949(91)90037-M
  24. Patnaik, S.N., Coroneos, R.M. and Hopkins, D.A. (2000), "Compatibility conditions of structural mechanics", Int. J. Numer. Meth. Eng., 47, 685-704. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<685::AID-NME788>3.0.CO;2-Y
  25. Patnaik, S.N. Hopkins, D.A. and Coroneos, R. (1986), "Structural Optimization with approximate sensitivities", Comput. Struct., 58, 407-418.
  26. Patnaik, S.N. and Yadagiri, S. (1976), "Frequency analysis of structures by Integrated Force Method", Comput. Meth. Appli. Mech. Eng., 9, 245-265. https://doi.org/10.1016/0045-7825(76)90030-X
  27. Pian, T.H.H. (1964), "Derivation of element stiffness matrices by assumed stress distributions", A.I.A.A J., 2, 1333-1336.
  28. Pian, T.H.H. and Chen, D.P. (1982), "Alternative ways for formulation of hybrid stress elements", Int. J. Numer. Meth. Eng., 19, 1741-1752.
  29. Przemieniecki, J.S. (1968), Theory of Matrix Structural Analysis, McGraw Hill, New York.
  30. Razzaque, A. (1973), "Program for triangular plate bending element with derivative smoothing", Int. J. Numer. Meth. Eng., 6, 333-345. https://doi.org/10.1002/nme.1620060305
  31. Reissner, E. (1945), "The effect of transverse shear deformation on bending of plates", J. Appl. Mech., 12, A69-A77.
  32. Robinson, J. (1973), Integrated Theory of Finite Elements Methods, Wiley, New York
  33. Spilker, R.L. (1982), "Invariant 8-node hybrid-stress elements for thin and moderately thick plates", Int. J. Numer. Meth. Eng., 18, 1153-1178. https://doi.org/10.1002/nme.1620180805
  34. Kim, S.H. and Choi, C.K. (2005), "Modeling of Plates and Shells: Improvement of quadratic finite element for Mindlin plate bending", Int. J. Numer. Meth. Eng., 34(1), 197-208.
  35. Timoshenko, S.P. and Krieger, S.W. (1959), Theory of plates and shells, Second Edition, McGraw Hill International Editions.
  36. Tong, P. (1970), "New displacement hybrid finite element models for solid continua", Int. J. Numer. Meth. Eng., 2, 73-83. https://doi.org/10.1002/nme.1620020108

피인용 문헌

  1. Application of the dual integrated force method to the analysis of the off-axis three-point flexure test of unidirectional composites vol.50, pp.3, 2016, https://doi.org/10.1177/0021998315576377
  2. Identification of material properties of composite materials using nondestructive vibrational evaluation approaches: A review vol.24, pp.12, 2017, https://doi.org/10.1080/15376494.2016.1196798
  3. Comparison between the stiffness method and the hybrid method applied to a circular ring vol.40, pp.2, 2018, https://doi.org/10.1007/s40430-018-1013-z