DOI QR코드

DOI QR Code

Numerical Simulation of Flow and Dross Particle Transfer in a 55% Al-Zn Pot

  • Received : 2009.10.31
  • Accepted : 2012.06.19
  • Published : 2012.06.30

Abstract

Computational fluid dynamics (CFD) is nowadays a powerful and reliable tool for simulating different flow processes and temperature. CFD is used to analyze the various pot geometries and operative variables in 55% Al-Zn pot of CGL. In this research, different strip velocities were assumed and then shown the flow pattern in the pot that was similar in the different strip velocities. Temperature distribution in the pot depended on inductors and inlet strip temperature at the steady condition. Generation of dross particles and transport models were considered to describe dross particles evolution inside the pot. In order to observe dross influence by scrap location, dross particles were generated upon the sink roll. Floating time of dross particles is different by scraper locations above the sink roll.

Keywords

References

  1. A. Nasser, A. Yadav, P. Pathak, and T. Altan, J. Mater. Proc. Tech., 210, 429 (2010). https://doi.org/10.1016/j.jmatprotec.2009.10.003
  2. I. Mejia, A. Bedolla-Jacuinde, C. Maldonado, and J. M. Cabrera, Mater. Sci. Eng. A, 528, 4468 (2011). https://doi.org/10.1016/j.msea.2011.02.040
  3. C. Nikhare, P. D. Hodgson, and M. Weiss, Mater. Sci. Eng. A, 528, 3010 (2011). https://doi.org/10.1016/j.msea.2010.12.098
  4. T. Uemori, T. Okada, and F. Yoshida, Key Eng. Mater., 177, 497 (2000).
  5. D. W. Leu, J. Mater. Proc. Tech., 66, 9 (1997). https://doi.org/10.1016/S0924-0136(96)02453-3
  6. R. M. Cleveland and A. K. Ghosh, Inter. J. Plasticity, 18, 769 (2002). https://doi.org/10.1016/S0749-6419(01)00054-7
  7. J. B. Kim and S. K. Lee, Corros. Sci. Tech., 26, 191 (1997).
  8. J. B. Kim and S. K. Lee, Corros. Sci. Tech., 30, 247 (2001).
  9. D. Phelan, Galvatech, 6, 961, (2004).
  10. C. H. Ellen and C. V. Tu, J. Fluids Eng., 106, 399 (1984). https://doi.org/10.1115/1.3243137
  11. Y. H. Kim, Y. W. Cho, S. H. Chung, J. D. Shim, and H. Y. Ra, ISIJ, 44, 369 (2005).
  12. Y. H. Kim, Y. W. Cho, S. H. Chung, J. D. Shim, and H. Y. Ra, ISIJ, 40, 706 (2000). https://doi.org/10.2355/isijinternational.40.706
  13. S. J. Lee, S.Kim, M. S. Koh, and J.H. Choi, ISIJ, 42, 407 (2002). https://doi.org/10.2355/isijinternational.42.407
  14. F. Bezzo, S. Macchietto, and C. C. Pantelides, Com. Chem. Eng., 28, 501 (2004). https://doi.org/10.1016/j.compchemeng.2003.08.004
  15. M. A. Hoef, M. S. Annaland, and J. A. M Kuipers, Chem. Eng. Sci., 59, 5157 (2004). https://doi.org/10.1016/j.ces.2004.07.013
  16. Y. Takeishi and H. Morino, ISIJ, 40, 1127 (2000). https://doi.org/10.2355/isijinternational.40.1127
  17. K. C. Ro and H. S. Ryou, J. Com. Fluids. Eng., 15, 1 (2010).
  18. N. G. Wright and G. J. Easom, Appl. Math. Model., 27, 1013 (2003). https://doi.org/10.1016/S0307-904X(03)00123-9