DOI QR코드

DOI QR Code

Isolation and Characterization of an Antagonistic Endophytic Bacterium Bacillus velezensis CB3 the Control of Citrus Green Mold Pathogen Penicillium digitatum

감귤저장병 병원균 Penicillium digitatum 방제를 위한 길항 내생세균 Bacillus velezensis CB3의 분리 및 특성 규명

  • Lee, Ji-Hyun (Department of Applied Biology, Chungnam National University) ;
  • Seo, Mun-Won (Department of Applied Biology, Chungnam National University) ;
  • Kim, Hong-Gi (Department of Applied Biology, Chungnam National University)
  • 이지현 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 서문원 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 김홍기 (충남대학교 농업생명과학대학 응용생물학과)
  • Received : 2012.05.30
  • Accepted : 2012.06.21
  • Published : 2012.06.30

Abstract

In order to develop environment friendly fungicide for the control of citrus green mold (Penicillium digitatum) using endophytic bacteria, the 21 bacterial isolates were isolated from citrus leaves in seven different orchards in Jeju Province. Among the 21 bacterial isolates, 5 bacterial isolates presented antifungal activity against green mold pathogen P. digitatum. The CB3 isolate, which showed the most strong antagonistic effect, was selected through opposite culture against the pathogen. The rod-shaped, gram-positive bacterium CB3 was identified as Bacillus velezensis based on morphological, physiological characteristics, 16S rDNA, and gyr A gene sequence analysis. The isolate CB3 showed strong antifungal activity against two citrus postharvest pathogen P. digitatum. Citrus fruits were treated by wound inoculation with P. digitatum pathogen, and the control efficacy of CB3 culture broth was 66.7% ($1{\times}10^8$ cfu/ml). In conclusion, The stability of CB3 and its strong antifungal activity also lead us to believe that it has potential for application as an environment friendly biological control agent.

대표적인 감귤 녹색곰팡이병(Penicillium digitatum) 방제용 생물농약을 개발하고자 제주도내 7개 과수원으로부터 채집된 citrus 잎에서 21균주의 내생세균을 분리하였다. 그 중 5개의 세균이 녹색곰팡이병균 P. digitatum에 항균활성을 나타냈으며, 대치배양에서 가장 강력한 항균활성을 보인 CB3 균주가 선발되었다. CB3 균주는 간상형의 그람 양성세균으로 생리 생화학적 특성과 gyrA 유전자 염기서열 분석에 의해 Bacillus velezensis로 동정되었다. CB3 균주는 감귤 저장병 병원균 Penicillium digitatum에 강력한 항균활성을 나타내었다. $1{\times}10^5$ spores/ml에 이르는 고농도의 P. digitatum을 감귤에 상처접종했을 때에도, $1{\times}10^8$ cfu/ml의 CB3에 의한 방제효과는 66.7%로 매우 높았다. 본 연구결과, Bacillus velezensis CB3의 안정성과 강한 방제활성 등을 고려할 때 유용 친환경적 방제제로서 매우 가치가 있을 것으로 판단된다.

Keywords

References

  1. Alvindia, D. G. and Natsuaki, K. T. 2009. Biocontrol activities of Bacillus amyloliquefaciens DGA14 isolated from banana fruit surface against banana crown rot causing pathogens. Crop Protection 28:236-242. https://doi.org/10.1016/j.cropro.2008.10.011
  2. Bus, V. G., Bongers, A. J. and Risse, L. A. 1991. Occurrence of Penicillium digitatum and P. italicum resistant to benomyl, thiabendazole, and imazalilon citrus fruit from different geographic origins. Plant Dis. 75:1098-1100. https://doi.org/10.1094/PD-75-1098
  3. Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. Ph. D. Thesis, University of Newcastle upon Tyne, UK.
  4. Chun, J. S. and Bae, K. S. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonievan Leeuwenhoek 78:123-127. https://doi.org/10.1023/A:1026555830014
  5. Felsenstein, J. 1985. Confidance limits on phylogenies : An approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  6. Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soil borne plant pathogens. The Plant Cell 8:1855-1869. https://doi.org/10.1105/tpc.8.10.1855
  7. Harding, P. R. 1972. Differential sensitivity to thiabendazole by strains of Penicillium italicum and P. digitatum. Plant Dis. Rep. 56:256-260.
  8. Ismail, M. and Zhang, J. 2004. Post-harvest citrus diseases and their control outlooks. Pest Manage 15:29-35.
  9. Kim, G. H., Oh, S. O., Hur, J. S., Yum, K. J. and Koh, Y. J. 2006. Optimum cultivation conditions for mass production of an antagonistic bacterium Bacillus subtilis BD0310 for Development of a Microbial Agent Controlling Gray Blight of Tea Plants. Res. Plant Dis. 12:85-90. https://doi.org/10.5423/RPD.2006.12.2.085
  10. Kim, H. W., Lee, K. Y., Baek, J. W., Kim, H. J., Park, J. Y., Lee, J. W., Jung, S. J. and Moon, B, J. 2004. Isolation and identification of antagonistic bacterium active against Sclerotinia sclerotioum causing Sclerotinia rot on crisphead lettuce. Res. Plant Dis. 10:331-336. https://doi.org/10.5423/RPD.2004.10.4.331
  11. Kim, J. H. Choi, Y. H., Kang, S. J., Joo, G. J., Suh, J. S. and Lim, T. H. 2003. Isolation of Bacillus amyloliquefaciens MJ-3 and its effect on the early growth promotion of red pepper plug seedlings in compost. Korean Journal of Life Science 13:582-589. https://doi.org/10.5352/JLS.2003.13.5.582
  12. Kim, Y. S. 2005. Biocontrol activity of antifungal antibiotics producing Bacillus atrophaeus CNU05-1 against Botrytis gray mold. Graduate School of Chungnam National University.
  13. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequence. J. Mol. Evol. 16:111-120. https://doi.org/10.1007/BF01731581
  14. Kinay, P., Mansour, M. F., Gabler, F. M., Margosan, D. A. and Smilanick, J. L. 2007. Characterization of fungicide-resistant isolates of Penicillium digitatum collected in California. Crop Protection 26:647-656. https://doi.org/10.1016/j.cropro.2006.06.002
  15. Kong, H. G. Chun, O. J., Choi, K. H., Lee, K. Y., Baek, J. W., Kim, H. J., Murugaiyan, S., Moon, B. J., and Lee, S. W. 2010. Formulation of Bacillus amyloliquefaciens A-2 and its efficacy to control tomato leaf mold caused by Fulvia fulva. Res. Plant Dis. 16:27-34 https://doi.org/10.5423/RPD.2010.16.1.027
  16. Lee, D. G. 2010. Biological control of strawberry anthracnose using endophytic bacteria, Bacillus amyloliquefaciens CP1. Graduate School of Chungnam National University.
  17. Lee, J. B., Shin, J. H., Jang, J. O., Shin, K. S., Choi, C. S., Kim, K. W., Jo, M. S., Jeon, C. P., Kim, Y. H. and Kwon, G. S. 2008. Antifungal activity of Bacillus sp. AM-651 against Phytophthora capsici. Kor. J. Microbiol. Biotechnol. 36:227-232.
  18. Maldonado M. C., Corona J., Gordillo M. A. and Navarro A. R. 2009. Isolation and partial characterization of antifungal metabolites produced by Bacillus sp. IBA33. Curr. Microbiol. 59:646-650. https://doi.org/10.1007/s00284-009-9489-5
  19. Nam, M. H., Park, M. S., Kim, H. G. and Yoo, S. J. 2009. Biological control of strawberry fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation. J. Microbiol. Biotechnol. 19:520-524. https://doi.org/10.4014/jmb.0805.333
  20. Roh J. Y., Liu Q., Choi J. Y., Wang Y., Shim H. J., Xu H. G., Choi G. J., Kim J. C. and Je Y. H. 2009. Construction of a recombinant Bacillus velezensis strain as an integrated control agent against plant diseases and insect pests. J. Microbiol. Biotechnol. 19:1223-1229. https://doi.org/10.4014/jmb.0902.065
  21. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuiper, O. P., Paquot, M. and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis towards Podosphaera fusca. Mol. Plant Microbe. Interact. 20:430-440. https://doi.org/10.1094/MPMI-20-4-0430
  22. Sharma, R. R., Sing, H. D. and Sing, H. R. 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonist. Biological Control 50:205-221. https://doi.org/10.1016/j.biocontrol.2009.05.001
  23. Smilanick, J. L., Brown, G. E. and Eckert, J. W. 2006. Postharvest citrus diseases and their control. Fresh Citrus Fruits, 2nd Ed. Science Source 339-396.
  24. Wang L. T., Lee F. L., Tai C. J. and Kuo H. P. 2008. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 58:671-5. https://doi.org/10.1099/ijs.0.65191-0
  25. Yu, G. Y., Sinclair, J. B., Hartman, G. L. and Bertagnolli, B. L. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem. 34:955-963. https://doi.org/10.1016/S0038-0717(02)00027-5
  26. Yu, S. M., Kim, Y. K., Nam, H. S., Lee, Y. K., Lee, S. D., Lee, K. J. and Lee, Y. H. 2010. Suppression of green and blue mold in postharvest mandarin fruit by treatment of Pantoea agglomerans 59-4. Plant Pathol. J. 26:353-359. https://doi.org/10.5423/PPJ.2010.26.4.353

Cited by

  1. Inhibitory Effects of Organic Acids against Pectinolytic Yeasts Isolated from Decayed Citrus vol.31, pp.1, 2015, https://doi.org/10.9724/kfcs.2015.31.1.001
  2. Complete Genome Sequence of Bacillus velezensis GQJK49, a Plant Growth-Promoting Rhizobacterium with Antifungal Activity vol.5, pp.35, 2017, https://doi.org/10.1128/genomeA.00922-17
  3. Plant-microbial interactions in agriculture and the use of farming systems to improve diversity and productivity vol.3, pp.2, 2017, https://doi.org/10.3934/microbiol.2017.2.335
  4. Combined Treatment of Chlorine Dioxide Gas, Mild Heat, and Fumaric Acid on Inactivation of Listeria monocytogenes and Quality of Citrus unshiu Marc. during Storage vol.45, pp.8, 2016, https://doi.org/10.3746/jkfn.2016.45.8.1233