DOI QR코드

DOI QR Code

COMPUTATIONAL PREDICTION OF ICE ACCRETION AROUND A ROTORCRAFT AIR INTAKE

회전익기 공기흡입구의 표면발생 결빙에 관한 전산 예측

  • Jung, K.Y. (Specialized Graduate School of Aerospace Engineering, Gyeongsang Nat'l Univ.) ;
  • Ahn, G.B. (Specialized Graduate School of Aerospace Engineering, Gyeongsang Nat'l Univ.) ;
  • Myong, R.S. (Dept. of Aerospace and System Engineering & Research Center for Aircraft Parts Technology, Gyeongsang Nat'l Univ.) ;
  • Cho, T.H. (Dept. of Aerospace and System Engineering & Research Center for Aircraft Parts Technology, Gyeongsang Nat'l Univ.) ;
  • Jung, S.K. (Korea Aerospace Industries, Ltd.) ;
  • Shin, H.B. (Korea Aerospace Industries, Ltd.)
  • 정기영 (경상대학교 항공특성화대학원) ;
  • 안국빈 (경상대학교 항공특성화대학원) ;
  • 명노신 (경상대학교 항공우주시스템공학과 및 항공기부품기술연구소) ;
  • 조태환 (경상대학교 항공우주시스템공학과 및 항공기부품기술연구소) ;
  • 정성기 (한국항공우주산업) ;
  • 신훈범 (한국항공우주산업)
  • Received : 2012.01.03
  • Accepted : 2012.05.17
  • Published : 2012.06.30

Abstract

Ice accretion on the surface of aircraft in flight can adversely affect the safety of aircraft. In particular, it can cause degradation of critical aircraft performances such as maximum lift coefficient and total pressure recovery factor in engine air intake. In this study, computational prediction of ice accretion around a rotorcraft air intake is conducted in order to identify the impingement region with high droplet collection efficiency. Then the amount of ice accretion on the air intake, which is essential in determining the required power of ice protection system, is calculated. Finally, the effect of icing wind tunnel size is investigated in order to check the compatibility with the real in-flight test environment.

Keywords

References

  1. 2005, Bragg, M.B., Broeren, A.P., Blumenthal, L.A., "Iced-airfoil Aerodynamics," Progress in Aerospace Sciences, Vol.41, pp.323-362. https://doi.org/10.1016/j.paerosci.2005.07.001
  2. 2001, Lynch, F.T., Khodadoust, A., "Effects of Ice Accretions on Aircraft Aerodynamics," Progress in Aerospace Sciences, Vol.37, pp.669-767. https://doi.org/10.1016/S0376-0421(01)00018-5
  3. 1990, Ruff, G.A., Berkowitz, B.W., "User Manual for the NASA Lewis Ice Accretion Prediction Code (LEWICE)," NASA CR 185129.
  4. 1988, Keith, T.G., De Witt, K.J., Wright W.B., and Masiulaniec, K.C., "Overview of Numerical Codes Developed for Predicted Electrothermal De-Icing of Aircraft Blades," AIAA 26th Aerospace Sciences Meeting, pp.1-14.
  5. 1990, Al-khalil, K.M., Keith T.G., Dewitt K.J., and Nathman J.K., Dietrich, D.A., "Thermal Analysis of Engine Inlet Anti-icing Systems," Journal of Propulsion and Power, Vol.6, pp.628-623. https://doi.org/10.2514/3.23264
  6. 2000, Gent, R.W., Dart, N.P., Cansdale, J.T., "Aircraft Icing," Philosophical Transactions of the Royal Society of London, Vol.358, pp.2873-2911. https://doi.org/10.1098/rsta.2000.0689
  7. 2010, Jung, S.K., Shin, S.M., Myong, R.S., and Cho, T.H., Jeong, H.H. Jung, J.H., "Ice Accretion Effect on the Aerodynamic Characteristics of KC-100 Aircraft," 48th AIAA Aerospace Sciences Meeting. AIAA-2010-1237.
  8. 1998, Kind, R.J., Potapczuk, M.G., Feo, A., and Golia. C., Shah, A.D., "Experimental and Computational Simulation of In-flight Icing Phenomena," Progress in Aerospace Science, Vol.34, pp.257-345. https://doi.org/10.1016/S0376-0421(98)80001-8
  9. 2010, Jung, S.K., Lee, C.H., Shin, S.M., and Myong, R.S., Cho, T.H., "An Investigation of Icing Effects on the Aerodynamic Characteristics of KC-100 Aircraft," (in Korean) Journal of The Korean Society for Aeronautical and Space Sciences, Vol.38, No.6, pp.530-536. https://doi.org/10.5139/JKSAS.2010.38.6.530
  10. 2010, Jung, S.K., Myong, R.S., Cho, T.H., "An Eulerian-Based Droplet Impingement and Ice Accretion Code for Aircraft Icing Prediction," (in Korean) Journal of Computational Fluids Engineering (Korean Society of Computational Fluids Engineering), Vol.15, No.2, pp.71-78.
  11. 2011, Jung, S.K., Lee. C.H., Nagdewe S., and Myong, R.S., Cho, T.H., "A Study on Truncated Flapped Airfoil for Efficient Icing Wind Tunnel Test," (in Korean) Journal of The Korean Society for Aeronautical and Space Sciences, Vol.39, No.6, pp.481-486. https://doi.org/10.5139/JKSAS.2011.39.6.481
  12. 2012, An, Y.G., Myong, R.S., "Scaling Methods for Icing Wind Tunnel Test," (in Korean) Journal of The Korean Society for Aeronautical and Space Sciences, Vol.40, No.2, pp.1-8. https://doi.org/10.5139/JKSAS.2012.40.1.1
  13. 1997, Tezok, F., Ernest, F., "Icing Tunnel Testing Methodology: Pre-Test CFD, Tunnel Peculiarities, Scaling Effects," Proceedings of The Aerodynamics Symposium, Vol.6, pp.81-100.
  14. 2002, Papadakis, M., Hung, K.E., Vu, G.T., and Yeong, H.W., Bidwell, C.S., et al., "Experimental Investigation of Water Droplet Impingement on Airfoils, Finite Wings, and an S-Duct Engine Inlet," NASA TM-2002-211700.
  15. 2011, Jung, S.K., Shin, S.M., Myong, R.S. and Cho, T.H., "An Efficient CFD-based Method for Aircraft Icing Simulation Using a Reduced Order Model," Journal of Mechanical Science and Technology, Vol.25, pp.703-711. https://doi.org/10.1007/s12206-011-0118-4
  16. 2009, Shin, H.B., Choi, W., Seo, S.J., and Ryu, J.B., "Study of Icing Accretion on The 2D Airfoil," (in Korean) Korean Society of Computational Fluid Engineering Spring Conference, pp.21-26.
  17. 2003, FLUENT Inc., FLUENT 6.3 User's Guide.
  18. 1999, Bourgault, Y., Habashi, W.G., Dompierre, J., and Baruzzi, G.S., "A Finite Element Method Study of Eulerian Droplets Impingement Models," International Journal for Numerical Methods in Fluids, Vol.4, pp.429-499.
  19. 2003, Beaugendre, H., Morency, F., Habashi, W.G., "FENSAP-ICE's Three-Dimensional In-Flight Ice Accretion Module: ICE3D," Journal of Aircraft, Vol.40, No.2, pp. 239-247. https://doi.org/10.2514/2.3113
  20. 2008, Cao, Y., Zhang, Q. and Sheridan, J., "Numerical Simulation of Rime Ice Accretions on an Aerofoil Using an Eulerian Method," The Aeronautical Journal, Vol.112, No.1131, pp.243-249.
  21. 2010, Newmerical Technologies Inc., NTI Solutions User Manual.

Cited by

  1. 항공기 결빙 보호장치의 기술 현황 및 전망 vol.48, pp.11, 2012, https://doi.org/10.5139/jksas.2020.48.11.911