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Abstract

In this paper we study various properties of the fuzzy linear maps over the fuzzy quotient spaces. In particular we obtain
some exact sequences of the fuzzy linear maps over the fuzzy quotient spaces.
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1. Introduction

Fuzzy modules were introduced by Negoita and Ralescu
[1]. Katsaras and Liu [2], and Lowen [3] have developed
the theory of fuzzy vector spaces.

Fu-Zhen Pan [4] investigated fuzzy vector spaces for the
following purposes; to establish a fundamental frame of
fuzzy vector space by virtue of homological algebra and
modular theory, and to stretch it out to study general fuzzy
modules.

In fact, fuzzy vector spaces are the simplest kind of fuzzy
free modules. The theory of fuzzy modules has been a vir-
gin field for a long time.

Recently, many authors presented the same research on
fuzzy modules, properties of fuzzy finitely generated mod-
ules and fuzzy quotient modules, etc.

In particular, Fu-Zhen Pan [5] and Kim [6] investigated
the properties of the sequence of fuzzy linear maps and
studied the situations in connection with two exact se-
quences of fuzzy linear maps.

In this paper, we study various properties of fuzzy linear
maps over fuzzy quotient spaces.

2. Preliminaries

In this section, we review some definitions and some re-
sults which will be used in the later sections. Throughout
this paper, we assume that all modules are equipped with
the same underlying commutative ring R.
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Definition 2.1 ([5]). A R-module M together with a func-
tion χ from M into [0, 1] is called a fuzzy R-module if it
satisfies the following conditions;

1. χ(a+ b) ≥ min{χ(a), χ(b)}

2. χ(−a) = χ(a)

3. χ(0) = 1

4. χ(ra) ≥ χ(a),

for any a, b ∈M and r ∈ R, denoted by (M,χ) or χM .

Definition 2.2 ([5]). Let χM , ηN be any two fuzzy R-
modules, then f̃ : χM −→ ηN is called a fuzzy linear map
(or fuzzy R-map) if there exists a linear map f : M −→ N
such that η(f(a)) ≥ χ(a) for all a ∈M .

Remark 2.3. Let χM , ηN be any two fuzzy R-modules.
Then f̃ : χM −→ ηN is called a fuzzy strong linear map if
there exists a linear map f : M −→ N such that η(f(a)) =
χ(a) for all a ∈M .

Definition 2.4 ([5]). Let f̃ : χV −→ ηW be a fuzzy lin-
ear map. f̃ is called a fuzzy weak isomorphism if f is an
isomorphism, denoted χV 'fW ηW .

Definition 2.5 ([5]). For a fuzzy linear map f̃ : χM −→
ηN , ηImf is called the image of f̃ denoted by ηImf̃ . Fur-
ther, χM0

, where M0 = {m ∈ M | η(f(m)) = 1} is
called the Kernel of f̃ denoted by χKerf̃ .

Theorem 2.6 ([5]). Let f̃ : χM −→ ηN be a fuzzy linear
map, then χKerf̃ is a fuzzy subspace of χM and ηImf̃ is a
fuzzy subspace of ηN .

Remark 2.7. For any fuzzy linear map f̃ : χM −→ ηN ,

χKerf ≤ χKerf̃ and ηImf = ηImf̃ .
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Definition 2.8 ([5]). A fuzzy linear map f̃ : χM −→ ηN is
called epic (or monic) iff f : M −→ N is epic (or monic).

Definition 2.9 ([5]). A fuzzy linear map f̃ : χM −→ ηN is
called quasi-monic iff χKerf̃ = χM ′ , where M ′ = {m ∈
M | χ(m) = 1}.

Remark 2.10. Obviously, when χKerf̃ = {0}, quasi-
monic is just ordinary monic.

Definition 2.11 ([5]). Two fuzzy maps

χM
f̃→ ηN

g̃→ ρV

are exact at ηN iff ηImf̃ = ηKerg̃ .

Remark 2.12. By the induction, from Definition 2-11, we
can define an exact sequence of fuzzy linear maps.

Theorem 2.13 ([5]). A fuzzy R-module χM is called a
fuzzy singular R-module iff χ(m) = 1 for all m ∈ M ,
denoted by 1.

Theorem 2.14 ([5]). An exact sequence

1
ĩ→ χM

f̃→ ηN
g̃→ ρV

j̃→ 1

where the two 1’s are the appropriate singular fuzzy R-
modules and ĩ, j̃ are the fuzzy identity map and an epic
map, respectively, is called a short exact sequence of fuzzy
linear maps.

Theorem 2.15 ([5]). Given a short exact sequence of fuzzy
linear maps,

1
ĩ→ χM

f̃→ ηN
g̃→ ρV

j̃→ 1

1. Imĩ = Kerf̃ = χM ′ .

2. Imf̃ = Kerg̃ ≥ ηN ′ .

3. g̃ is epic,

where M ′ = {m ∈ M | χ(m) = 1} and N ′ = {n ∈ N |
η(n) = 1}.

Proposition 2.16 ([3]). For any fuzzy linear map f̃ :
χM −→ ηN ,

χM ′ ⊆ χKerf̃ ,
where M ′ = {m ∈M | χ(m) = 1}.

Definition 2.17 ([8]). By the coimageCoimh and the cok-
ernel Coker h of a homomorpism h : X −→ Y , we mean
the quotient modules

Coimh = X/Kerh,Coker h = Y/Imh.

3. Fuzzy linear maps over fuzzy quotient
spaces

In this section, we study various properties of fuzzy lin-
ear maps over fuzzy quotient spaces.

Let χW be an arbitrary fuzzy subspace of a fuzzy vector
space χV . Then a map χ̄ : V/W −→ [0, 1] given by

χ̄(u+W ) =

{
1 if v ∈W
inf{χ(v′) | v′ ∈ v +W} if v /∈W

can determine the fuzzy quotient space(V/W, χ̄), denoted
χV/W or χ̄V/W (See [5]).

Theorem 3.1. Consider the following diagram of fuzzyR-
maps of R-modules :

χM
f̃−→ ηN

g̃−→ ρWyα̃ yβ̃ yγ̃
µV

f̃1−→ νP
g̃1−→ ES

where the rows are exact and the squares are commutative.
If β̃ is quasi-monic, then the map

f̃∗ : χ̄Coim(α̃) −→ η̄Coim(β̃)

defined by

f̃∗(m+Kerα̃) = f(m) +Kerβ̃

is a fuzzy linear map.

Proof. First we prove that f̃∗ is well-defined. Let m +
Kerα̃ = m′ +Kerα̃. Then

m = m′ + x(x ∈ Kerα̃).

Thus

f(m) +Kerβ̃ = f(m′) + f(x) +Kerβ̃.

Since

νβf(x) = νf1α(x) ≥ µα(x) = 1,

we have
νβf(x) = 1.

So

f(x) ∈ Kerβ̃.

Thus
f(m) +Kerβ̃ = f(m′) +Kerβ̃.
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Thus f̃∗ is well-defined. On the other hand,

f̃∗[(m+Kerα̃) + (m′ +Kerα̃)]

= f̃∗(m+m′ +Kerα̃)

= f(m+m′) +Kerβ̃

= f(m) + f(m′) +Kerβ̃

= (f(m) +Kerβ̃) + (f(m′) +Kerβ̃)

= f̃∗(m+Kerα̃) + f̃∗(m′ +Kerα̃).

For any r ∈ R,

f̃∗(r(m+Kerα̃)) = f̃∗(rm+Kerα̃)

= f(rm) +Kerβ̃

= rf(m) +Kerβ̃

= r[f(m) +Kerβ̃]

= rf̃∗(m+Kerα̃).

Thus f̃∗ is a linear map. To prove that f̃∗ is a fuzzy linear
map, we must show that

η̄f̃∗(m+Kerα̃) ≥ χ̄(m+Kerα̃)

for all m + Kerα̃ ∈ χ̄Coimα̃. Let m + Kerα̃ be any
element of χ̄Coimα̃. If m ∈ Kerα̃, then

η̄f̃∗(m+Kerα̃) = η̄f̃∗(0)

= η̄(0)

= 1

≥ χ̄(m+Kerα̃).

Let m /∈ Kerα̃. If f(m) ∈ Kerβ̃, then

η̄f̃∗(m+Kerα̃) = η̄(f(m) +Kerβ̃)

= 1

≥ χ̄(m+Kerα̃).

If f(m) /∈ Kerβ̃, then

η̄f̃∗(m + Kerα̃)

= η̄(f(m) +Kerβ̃)

= inf{η(x) | x ∈ f(m) +Kerβ̃}
= inf{η(f(m) + y) | y ∈ Kerβ̃}
≥ inf{min{ηf(m), η(y)} | y ∈ Kerβ̃}
≥ inf{min{χ(m), η(y)} | y ∈ Kerβ̃}
= χ(m) [β̃ is quasi-monic]

≥ χ̄(m+Kerα̃).

Theorem 3.2. Consider the following diagram of fuzzyR-
maps of R-modules :

χM
f̃−→ ηN

g̃−→ ρWyα̃ yβ̃ yγ̃
µV

f̃1−→ νP
g̃1−→ ES

where the rows are exact and the squares are commutative.
If β̃ and γ̃ are quasi-monic, then the following sequence

χ̄Coim(α)
f̃∗→ η̄Coim(β)

g̃∗→ ρ̄Coim(γ)

is exact.

Proof. By Theorem 3.1, we can construct the fuzzy lin-
ear map

g̃∗ : η̄Coim(β̃) −→ ρ̄Coim(γ̃)

defined by

g̃∗(n+Kerβ̃) = g(n) +Kerγ̃

To prove that the given sequence in Theorem 3.2 is exact,
we must show that

η̄Imf̃∗ = η̄Kerg̃∗ .

Let n+Kerβ̃ be any element of Imf̃∗. Then there exists
m+Kerα̃ ∈ Coim(α̃) such that

f̃∗(m+Kerα̃) = n+Kerβ̃.

Thus f(m) + Kerβ̃ = n + Kerβ̃ and thus n = f(m) +
b(b ∈ Kerβ̃). Since β̃ is quasi-monic, b ∈ N ′ = {x |
η(x) = 1}. So η(b) = 1 and so ρg(b) = 1. If n ∈ Kerβ̃,
then

ρ̄g̃∗(n+Kerβ̃) = ρ̄g̃∗(0)

= ρ̄(0)

= 1.

Let n /∈ Kerβ̃. If g(n) ∈ Kerγ̃, then

ρ̄g̃∗(n+Kerβ̃) = ρ̄(g(n) +Kerγ̃)

= ρ̄(0)

= 1.

Let g(n) /∈ Kerγ̃. If z ∈ Kerγ̃, then Eγ(z) = 1 =
ρ(z), since γ̃ is quasi-monic. Also since Imf̃ = Kerg̃
and f(m) ∈ Imf̃ , f(m) ∈ Kerg̃. So ρgf(m) = 1. Thus

ρ̄g̃∗(n+Kerβ̃) = ρ̄(g(n) +Kerγ̃)

= inf{ρ(x) | x ∈ g(n) +Kerγ̃}
= inf{ρ(g(n) + z) | z ∈ Kerγ̃}
≥ inf{min{ρg(n), ρ(z)} | z ∈ Kerγ̃}
= ρg(n)

= 1,

since ρg(n) = ρg(f(m) + b) = ρ(gf(m) + g(b)) ≥
min{ρgf(m), ρg(b)} = 1. In any case, we have ρ̄g̃∗(n +
Kerβ̃) = 1. Thus n+Kerβ̃ ∈ Kerg̃∗. Hence

η̄Imf̃∗ ⊆ η̄Kerg̃∗ .
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Conversely, if n+Kerβ̃ ∈ η̄Kerg̃∗ , then

ρ̄g̃∗(n+Kerβ̃) = ρ̄(g(n) +Kerγ̃)

= 1

Thus g(n) ∈ Kerγ̃. For if g(n) /∈ Kerγ̃, then

1 = ρ̄g̃∗(n+Kerβ̃) = ρ̄(g(n) +Kerγ̃)

= inf{ρ(g(n) + z) | z ∈ Kerγ̃}.

Thus ρg(n) = 1. Since Eγg(n) ≥ ρg(n) = 1, Eγg(n) =
1 and thus g(n) ∈ Kerγ̃. This is a contradiction. Thus
g(n) ∈ Kerγ̃. Since γ̃ is quasi-monic, we have ρg(n) =
1. Thus n ∈ Kerg̃. Since Kerg̃ = Imf̃ , there exists
m ∈ χM such that f(m) = n. Thus

f̃∗(m+Kerα̃) = f(m) +Kerβ̃

= n+Kerβ̃.

Thus n+Kerβ̃ ∈ η̄Imf̃∗ . Hence

η̄Kerg̃∗ ⊆ η̄Imf̃∗ .

This completes the proof.

Theorem 3.3. Consider the following diagram of fuzzyR-
maps of R-modules :

χM
f̃−→ ηN

g̃−→ ρWyα̃ yβ̃ yγ̃
µV

f̃1−→ νP
g̃1−→ ES

where the rows are exact and the squares are commutative.
If f̃ is epic, then the map

˜f1
∗ : µ̄Coker(α̃) −→ ν̄Coker(β̃)

defined by

˜f1
∗(v + Imα̃) = f1(v) + Imβ̃

is a fuzzy linear map.

Proof. First we prove that ˜f1
∗ is well-defined. Let v +

Imα̃ = v′ + Imα̃. Then

v = v′ + x(x ∈ Imα̃).

Thus

f1(v) + Imβ̃ = f1(v′ + x) + Imβ̃

= f1(v′) + f1(x) + Imβ̃.

Since x ∈ Imα̃, there exists m ∈ M such that α̃(m) = x.
Thus

f1(x) = f1α(m) = βf(m).

So
f1(x) ∈ Imβ̃.

Thus f1(v) + Imβ̃ = f1(v′) + Imβ̃. Thus ˜f1
∗ is well-

defined. On the other hand,

˜f1
∗[(v + Imα̃) + (v′ + Imα̃)]

= ˜f1
∗(v + v′ + Imα̃)

= f1(v + v′) + Imβ̃

= f1(v) + f1(v′) + Imβ̃

= (f1(v) + Imβ̃) + (f1(v′) + Imβ̃)

= ˜f1
∗(v + Imα̃) + ˜f1

∗(v′ + Imα̃).

For any r ∈ R,

˜f1
∗(r(v + Imα̃)) = ˜f1

∗(rv + Imα̃)

= f1(rv) + Imβ̃

= rf1(v) + Imβ̃

= r[f1(v) + Imβ̃]

= r ˜f1
∗(v + Imα̃).

Thus ˜f1
∗ is a linear map. To prove that ˜f1

∗ is a fuzzy linear
map, we must show that

ν̄ ˜f1
∗(v + Imα̃) ≥ µ̄(v + Imα̃)

for all v + Imα̃ ∈ µ̄Cokerα̃. Let v + Imα̃ be any element
of µ̄Cokerα̃. Then

ν̄ ˜f1
∗(v + Imα̃) = ν̄(f1(v) + Imβ̃).

If f1(v) ∈ Imβ̃, then

ν̄ ˜f1
∗(v + Imα̃) = ν̄(f1(v) + Imβ̃)

= ν̄(0)

= 1

≥ µ̄(v + Imα̃).

If f1(v) /∈ Imβ̃, then

ν̄ ˜f1
∗(v + Imα̃)

= ν̄(f1(v) + Imβ̃)

= inf{ν(x) | x ∈ f1(v) + Imβ̃}
= inf{ν(f1(v) + y) | y ∈ Imβ̃}
= inf{ν(f1(v) + β(u)) | u ∈ N}
= inf{ν(f1(v) + βf(m)) | m ∈M} [f̃ is epic]

= inf{ν(f1(v) + f1α(m)) | m ∈M}
= inf{ν(f1(v + α(m))) | m ∈M}
≥ inf{µ(v + α(m)) | m ∈M}
= inf{µ(v + z) | z ∈ Imα̃}
= inf{µ(x) | x ∈ v + Imα̃}
= µ̄(v + Imα̃).

Hence ˜f1
∗ is a fuzzy linear map.
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Theorem 3.4. Consider the following diagram of fuzzyR-
maps of R-modules :

χM
f̃−→ ηN

g̃−→ ρWyα̃ yβ̃ yγ̃
µV

f̃1−→ νP
g̃1−→ ES

where the rows are exact and the squares are commutative.
If f̃ and g̃ are epic, then the following sequence

µ̄Coker(α̃)
˜f1∗→ ν̄Coker(β̃)

˜g1∗→ ĒCoker(γ̃)

is exact.

Proof. By Theorem 3.3, we can define the fuzzy linear
map

˜g1∗ : ν̄Coker(β̃) −→ ĒCoker(γ̃)

by
˜g1∗(n+ Imβ̃) = g1(n) + Imγ̃

To prove that the given sequence in Theorem 3.4 is exact,
we must show that

ν̄Im ˜f1∗
= ν̄Ker ˜g1∗

.

Let p+ Imβ̃ ∈ ν̄Ker ˜g1∗
, then

Ē ˜g1∗(p+ Imβ̃) = Ē(g1(p) + Imγ̃)

= 1

If g1(p) ∈ Imγ̃, then there existsw ∈W such that γ(w) =
g1(p). Since g̃ is epic, there exists n ∈ N such that g(n) =
w. Thus

g1(p) = γg(n)

= g1β(n).

Thus p − β(n) ∈ Kerg̃1. Since Kerg̃1 = Imf̃1, there
exists v ∈ V such that f1(v) = p− β(n). Thus

˜f1
∗(v + Imα̃) = f1(v) + Imβ̃

= p− β(n) + Imβ̃

= p+ Imβ̃.

Hence
p+ Imβ̃ ∈ ν̄Im ˜f1

∗ .

If g1(p) /∈ Imγ̃, then

1 = Ē ˜g1∗(p+ Imβ̃)

= Ē(g1(p) + Imγ̃)

= inf{E(g1(p) + z) | z ∈ Imγ̃}
≤ Eg1(p).

Thus Eg1(p) = 1. So p ∈ Kerg̃1. Since Kerg̃1 = Imf̃1,
there exists v ∈ V such that f1(v) = p. Thus

˜f1
∗(v + Imα̃) = f1(v) + Imβ̃

= p+ Imβ̃.

Hence
p+ Imβ̃ ∈ ν̄Im ˜f1∗

and hence
ν̄Ker ˜g1∗

⊆ ν̄Im ˜f1∗
.

Conversely let p + Imβ̃ be any element of ν̄Im ˜f1∗
. Then

there exists v + Imα̃ ∈ µ̄Coker(α̃) such that

˜f1
∗(v + Imα̃) = f1(v) + Imβ̃ = p+ Imβ̃.

Thus f1(v) − p ∈ Imβ̃. So there exists n ∈ N such that
β(n) = f1(v)− p. If g1(p) ∈ Imγ̃, then

Ē ˜g1∗(p+ Imβ̃) = Ē(g1(p) + Imγ̃)

= Ē(0)

= 1.

Let g1(p) /∈ Imγ̃. Since f1(v) ∈ Imf̃1 = Kerg̃1,
Eg1f1(v) = 1. Also Since f1α(m) ∈ Imf̃1 = Kerg̃1,
Eg1f1α(m) = 1 for all m ∈M . Thus we have

Ē ˜g1∗(p+ Imβ̃) = Ē ˜g1∗(f1(v)− β(n) + Imβ̃)

= Ē ˜g1∗(f1(v) + Imβ̃)

= Ē(g1f1(v) + Imγ̃)

= inf{E(g1f1(v) + z) | z ∈ Imγ̃}
= inf{E(g1f1(v) + γ(w)) | w ∈W}
≥ inf{min{Eg1f1(v), Eγ(w)} | w ∈W}
= inf{Eγ(w) | w ∈W}
= inf{Eγg(n) | n ∈ N} [g̃ is epic]

= inf{Eγgf(m) | m ∈M} [f̃ is epic]

= inf{Eg1βf(m) | m ∈M}
= inf{Eg1f1α(m) | m ∈M}
= 1.

Thus
Ē g̃1∗(p+ Imβ̃) = 1

and thus
p+ Imβ̃ ∈ ν̄Kerg̃1∗ .

Hence
ν̄Im ˜f1∗

⊆ ν̄Ker ˜g1∗
.

This completes the proof.

Lemma 3.5. Consider the following diagram of fuzzy R-
maps of R-modules :

χM
f̃−→ ηN

g̃−→ ρWyα̃ yβ̃ yγ̃
µV

f̃1−→ νP
g̃1−→ ES
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where the rows are exact and the squares are commutative.
If g̃ is epic, then for each w ∈ ρKerγ̃ , there exist n ∈ N
and v ∈ V such that

g(n) = w and f1(v) = β(n).

Proof. Let w be any element of ρKerγ̃ . Then Eγ(w) =
1. Since g̃ is epic, there exists n ∈ N such that g(n) = w.
Thus

Eg1β(n) = Eγg(n)

= Eγ(w)

= 1.

Thus
β(n) ∈ Kerg̃1.

Since Kerg̃1 = Imf̃1, we have

β(n) ∈ Imf̃1.

Hence there exists v ∈ V such that f1(v) = β(n).

Lemma 3.6. Consider the following diagram of fuzzy R-
maps of R-modules :

χM
f̃−→ ηN

g̃−→ ρWyα̃ yβ̃ yγ̃
µV

f̃1−→ νP
g̃1−→ ES

where the rows are exact and the squares are commutative.
If f̃ and g̃ are epic, then

1. Imβ̃ ⊆ Imf̃1.

2. f̃1(Imα̃) = Imβ̃.

Proof. 1. Let p ∈ Imβ̃. Then there exists n ∈ ηN such
that β(n) = p. Since f̃ is epic, there exists m ∈ χM such
that f(m) = n. Thus

p = βf(m) = f1α(m).

So p ∈ Imf̃1. Hence Imβ̃ ⊆ Imf̃1.
2. Let v ∈ Imα̃. Then there exists m ∈ χM such that

α(m) = v. Thus

f1(v) = f1α(m) = βf(m).

Hence
f̃1(Imα̃) ⊆ Imβ̃.

On the other hand, let p ∈ Imβ̃. Then there exists n ∈ N
such that β(n) = p. Since f̃ is epic, there exists m ∈ M
such that f(m) = n. Thus f1α(m) = βf(m) = β(n) =
p. Hence

p ∈ f1(Imα).

This completes the proof.

Theorem 3.7. Consider the following diagram of fuzzyR-
maps of R-modules :

χM
f̃−→ ηN

g̃−→ ρWyα̃ yβ̃ yγ̃
µV

f̃1−→ νP
g̃1−→ ES

where the rows are exact and the squares are commutative.
If f̃ and g̃ are epic, and if f̃1 is monic, then the map

h̃ : ρKerγ̃ −→ µ̄Cokerα̃

defined by
h̃(w) = v + Imα̃,

where g(n) = w, f1(v) = β(n) are given by Lemma 3.5,
is a zero fuzzy linear map and h̃(w) does not depend on the
choice of n and v.

Proof. Let w be any element of ρKerγ̃ and let g(n) =
w, g(n′) = w, β(n) = f1((v) and β(n′) = f1(v′) (n, n′ ∈
N and v, v′ ∈ V ). Then h(w) = v + Imα̃ and h(w) =
v′ + Imα̃, and also g(n− n′) = 0 and so n− n′ ∈ Kerg̃.
Since Kerg̃ = Imf̃ , n − n′ ∈ Imf̃ . Thus there exists
m ∈M such that f(m) = n− n′. Thus

f1α(m) = βf(m)

= β(n− n′)
= f1(v − v′).

Since f1 is monic, α(m) = v − v′. Thus

v + Imα̃ = v′ + α(m) + Imα̃

= v′ + Imα̃.

Letw be any element of ρKerγ̃ and let h̃(w) = v+Imα̃.
Then there exist n ∈ N and v ∈ V such that g(n) = w and
β(n) = f1(v). Since f is epic, there exists m ∈ M such
that f(m) = n. Thus

f1α(m) = βf(m)

= β(n).

Thus
h(w) = α(m) + Imα̃ = Imα̃ = 0

by definition of h̃. Hence h̃ is a zero map.

Theorem 3.8 ([7]). Consider the following diagram of
fuzzy R-maps of R-modules :

χM
f̃−→ ηN

g̃−→ ρWyα̃ yβ̃ yγ̃
µV

f̃1−→ νP
g̃1−→ ES
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where the rows are exact and the squares are commutative.
If f̃1 : µV −→ νP is quasi-monic, then the sequence of
fuzzy R-maps,

χKerα̃
f̃∗→ ηKerβ̃

g̃∗→ ρKerγ̃

is exact at ηKerβ̃ .

From Theorem 3.4 and Theorem 3.8, we have the fol-
lowing theorem.

Theorem 3.9. Consider the following diagram of fuzzyR-
maps of R-modules :

χM
f̃−→ ηN

g̃−→ ρWyα̃ yβ̃ yγ̃
µV

f̃1−→ νP
g̃1−→ ES

where the rows are exact and the squares are commutative.
If f̃1 is monic and if g̃1 is quasi-monic, and if f̃ and g̃ are
epic, then the sequence of fuzzy R-maps,

χKerα̃
f̃∗→ ηKerβ̃

g̃∗→ ρKerγ̃

h̃→ µ̄Cokerα̃
˜f1∗→ ν̄Coker(β)

˜g1∗→ ĒCoker(γ̃)
is exact.

Proof. By Theorem 3.4 and Theorem 3.8, we must show
that

(1) ρImg̃∗ = ρKerh̃ and (2) µ̄Imh̃ = µ̄Ker ˜f1∗
.

(1). Let x be any element of ρImg̃∗ . Then there exists
y ∈ ηKerβ̃ such that

g̃∗(y) = g(y) = x.

Since h̃ is a zero map,

µ̄h̃(x) = µ̄(0) = 1.

Thus x ∈ ρKerh̃. Hence

ρImg̃∗ ⊆ ρKerh̃.

Conversely let x be any element of ρKerh̃. Then

µ̄h̃(x) = 1.

Since x ∈ ρKerγ̃ ,
Eγ(x) = 1.

Since g̃ is epic, there exists y ∈ ηN such that g(y) = x.
Since

Eg1β(y) = Eγg(y) = 1,

we have
β(y) ∈ νKerg̃1 .

Since g̃1 is quasi-monic, νKerg̃1 = νP ′ , where P ′ = {x |
ν(x) = 1}. Thus

νβ(y) = 1.

So
y ∈ ηKerβ̃

and g(y) = x. Thus

x ∈ ρImg̃∗ .

Hence
ρKerh̃ ⊆ ρImg̃∗ .

This completes the proof of (1).
(2). To prove (2), we must show that

µ̄Ker ˜f1
∗ = {0},

since h̃ is a zero map. Let v + Imα̃ be any element of
µ̄Ker ˜f1

∗ . Then

ν̄ ˜f1∗(v + Imα̃) = ν̄(f1(v) + Imβ̃)

= 1.

If f1(v) ∈ Imβ̃, then there exists n ∈ N such that
β(n) = f1(v). Since f̃ is epic, there exists m ∈ M such
that f(m) = n. Thus

f1(v) = β(n)

= βf(m)

= f1α(m).

Since f̃1 is monic, v = α(m). Thus v + Imα̃ = α(m) +
Imα̃ = Imα̃ = 0.

If f1(v) /∈ Imβ̃, then

1 = ν̄ ˜f1
∗(v + Imα̃)

= ν̄(f1(v) + Imβ̃)

= inf{ν(f1(v) + z) | z ∈ Imβ̃}
≤ νf1(v).

Thus
νf1(v) = 1.

Thus
v ∈ Kerf̃1.

Since f̃1 is monic, we have v = 0. Hence

v + Imα̃ = Imα̃ = 0.

In any case, we have

v + Imα̃ = Imα̃ = 0.

Hence
µ̄Ker ˜f1∗

= {0}.
This completes the proof of (2).
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