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Abstract

In this paper we study various properties of the fuzzy linear maps over the fuzzy quotient spaces. In particular we obtain
some exact sequences of the fuzzy linear maps over the fuzzy quotient spaces.
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1. Introduction

Fuzzy modules were introduced by Negoita and Ralescu
[1]. Katsaras and Liu [2], and Lowen [3] have developed
the theory of fuzzy vector spaces.

Fu-Zhen Pan [4] investigated fuzzy vector spaces for the
following purposes; to establish a fundamental frame of
fuzzy vector space by virtue of homological algebra and
modular theory, and to stretch it out to study general fuzzy
modules.

In fact, fuzzy vector spaces are the simplest kind of fuzzy
free modules. The theory of fuzzy modules has been a vir-
gin field for a long time.

Recently, many authors presented the same research on
fuzzy modules, properties of fuzzy finitely generated mod-
ules and fuzzy quotient modules, etc.

In particular, Fu-Zhen Pan [5] and Kim [6] investigated
the properties of the sequence of fuzzy linear maps and
studied the situations in connection with two exact se-
quences of fuzzy linear maps.

In this paper, we study various properties of fuzzy linear
maps over fuzzy quotient spaces.

2. Preliminaries

In this section, we review some definitions and some re-
sults which will be used in the later sections. Throughout
this paper, we assume that all modules are equipped with
the same underlying commutative ring 2.
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Definition 2.1 ([5]). A R-module M together with a func-
tion x from M into [0, 1] is called a fuzzy R-module if it
satisfies the following conditions;

1. x(a+b) > min{x(a), x(b)}
2. y(—a) =
0)=1

4. x(ra) = x(a),

for any a,b € M and r € R, denoted by (M, x) or x .

=

x(a)
3,

=

Definition 2.2 ([5]). Let xar,nn be any two fuzzy R-
modules, then f : xps — nnis called a fuzzy linear map
(or fuzzy R-map) if there exists a linearmap f : M — N
such that n(f(a)) > x(a) forall a € M.

Remark 2.3. Let xps,ny be any two fuzzy R-modules.
Then f : xar — n is called a fuzzy strong linear map if
there exists a linear map f : M — N such thatn(f(a)) =
x(a) foralla € M.

Definition 2.4 ([5]). Let f : Xy — nw be a fuzzy lin-
ear map. f is called a fuzzy weak isomorphism if f is an
isomorphism, denoted xy :{,V nw.

Definition 2.5 ([5]). For a fuzzy linear map f XM —
1N, Nmy 18 called the image of f denoted by n;,, 7. Fur-
ther, xaz,, where My = {m € M | n(f(m)) = 1} is
called the Kernel of f denoted by X, ;-

Theorem 2.6 ([5]). Let f :xm — nn be a fuzzy linear

map, then x .. 7 is a fuzzy subspace of x s and 7, , 7 isa
fuzzy subspace of 1y .

Remark 2.7. For any fuzzy linear map foxm — NN,

XEKerf < Xgerf A0 Nimp = 1, -
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Definition 2.8 ([5]). A fuzzy linear map f XM —> NN 1S
called epic (or monic) iff f : M — N is epic (or monic).

Definition 2.9 ([5]). A fuzzy linear map f : xar — 7y is
called quasi-monic iff X .7 = Xa, where M" = {m €
M | x(m) =1}.

Remark 2.10. Obviously, when X7 = {0}, quasi-
monic is just ordinary monic.

Definition 2.11 ([5]). Two fuzzy maps

7 _
XM_>77N£>PV

are exact at ny iff 0, 7 = NKerg.

Remark 2.12. By the induction, from Definition 2-11, we
can define an exact sequence of fuzzy linear maps.

Theorem 2.13 ([5]). A fuzzy R-module x,; is called a
fuzzy singular R-module iff x(m) = 1 for all m € M,
denoted by 1.

Theorem 2.14 ([5]). An exact sequence
1—Z>XMi>77Ni>ﬂvi>1

where the two 1’s are the appropriate singular fuzzy R-

modules and 7, j are the fuzzy identity map and an epic
map, respectively, is called a short exact sequence of fuzzy
linear maps.

Theorem 2.15 ([5]). Given a short exact sequence of fuzzy
linear maps,
L5 xar B % oy 51

1. Imi = Kerf = xap.
2. Imf = Kerg > ny.
3. gis epic,

where M' = {m € M | x(m) =1} and N' = {n € N |

n(n) = 1}.

Proposition 2.16 ([3]). For any fuzzy linear map f

XM — 1N,
XM E Xgerfs

where M’ = {m € M | x(m) = 1}.

Definition 2.17 ([8]). By the coimage C'oim h and the cok-
ernel Coker h of a homomorpism i : X — Y, we mean
the quotient modules

Coimh = X/Kerh,Coker h =Y/Imh.
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3. Fuzzy linear maps over fuzzy quotient
spaces

In this section, we study various properties of fuzzy lin-
ear maps over fuzzy quotient spaces.

Let xw be an arbitrary fuzzy subspace of a fuzzy vector
space xv. Then amap x : V/W — [0, 1] given by

1 ifveWw

X(u+ W) = {inf{x(v’) v evt+ W) ifvg W

can determine the fuzzy quotient space(V/W, x), denoted
Xv/w or Xv,w (See [5]).

Theorem 3.1. Consider the following diagram of fuzzy R-
maps of R-modules :

XM i>

where the rows are exact and the squares are commutative.
If 8 is quasi-monic, then the map

J* 2 Xcoim@) = NMcoim ()
defined by
f*(m+ Kera) = f(m) + Kerf3
is a fuzzy linear map.

Proof. First we prove that f* is well-defined. Let m +
Kera =m' + Kera. Then

m=m'+x(x € Kera).
Thus

f(m) + Ker = f(m') + f(z) + Kerp.

Since
vBf(z) =vfia(z) > pa(z) =1,
we have
vBf(x)=1.
So
f(z) € Kerp.
Thus

f(m)+ Kerp = f(m') + Kerp.
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Thus f * 1s well-defined. On the other hand,

f*[(m + Kera) + (m' + Kerd))
= f*(m+m' + Kera)
= fim+m')+ Kerj
= f(m)+ f(m') + Kerp3
= (f(m) + Ker) + (f(m’

For any r € R,

f*(r(m+ Kera)) = f*(rm+ Kera)
flrm) + Kerf
= rf(m)+ Kerf
rlf(m) + Kerp]
= rf*(m+ Kera).

Thus f * is a linear map. To prove that f * is a fuzzy linear
map, we must show that

Af*(m+ Kera) > x(m + Kerd)

for all m + Kera € Xcoima- Let m + Kera be any
element of Xcoima. If m € Kera, then

if*(m+Kera) = 7f*(0)
= 1(0)
=1
> x(m+ Kera).

Letm ¢ Kera. If f(m) € Kerf3, then

f*(m 7(f(m) + Kerp)
1
xX(m + Kera).

+ Kera) =

v

If f(m) ¢ Kerp3, then
qf*(m + Kera)

= (f(m) + Kerp)

— inf{n(z) |z € f(m) + Kerf}
inf{n(f(m) +y) | y € Kerf}
inf{min{nf(m),n(y)} | y € Kerf3}
inf{min{x(m),n(y)} | y € Kerf}
x(m) [ is quasi-monic]

X(m + Kera).

(AVARIYS

v

O

Theorem 3.2. Consider the following diagram of fuzzy R-
maps of R-modules :

) + Kerp)
= *(m+Keroz)+f (m' + Kera).

where the rows are exact and the squares are commutative.
If 5 and # are quasi-monic, then the following sequence

_ N
XCoim(a) = NCoim(B) g_>

PCoim(y)
is exact.

Proof. By Theorem 3.1, we can construct the fuzzy lin-
ear map

g~* : ﬁCoim(B) — ﬁCoim(’y)
defined by

g (n+ Ker,f}) =g(n) + Kery

To prove that the given sequence in Theorem 3.2 is exact,
we must show that

ﬁ]mfk* = ﬁKerg~* .
Letn+ K erB be any element of I'm f *. Then there exists
m + Kera € Coim(&) such that

f*(m+ Kera) = n+ Kerf.

Thus f(m) + Ker3 = n+ Kerf3 and thus n = f(m) +

b(b € Kerf3). Since 3 is quasi-monic, b € N’ = 3
n(z) = 1}. Son(b) = L and so pg(b) = 1. If n € Kerf,
then

9*(0)
(0)

pg*(n+ Kerf) =

=D D

Letn ¢ Kerf. If g(n) € Kerd, then

plg(n) + Kery)
0)

pg*(n+ Kerf) =

— Q)
. —

Let g(n) ¢ Kery. If z € Kery, then Ey(z) = 1 =
p(z), since 7 is quasi-monic. Also since Imf = Kerg
and f(m) € Imf, f(m) € Kerg. So pgf(m) = 1. Thus

pg*(n+ KerB) = p(g(n)+ Kery)

= inf{p(z) | x € g(n) + Kery}

— inf{p(g(n) +2) | 2 € Kerd}
inf{min{pg(n), p(z)} | z € Kery}
= pg(n)
= 1,

since pg(n) = pg(f(m) +b) = p(gf(m) + g(b)) >
min{pg f(m), pg(b)} = 1. In any case, we have pg*(n +
KerB) = 1. Thus n + Kerp € Kerg*. Hence

v

T_)Imf* - ﬁKergN* .

115



International Journal of Fuzzy Logic and Intelligent Systems, vol. 12, no. 2, June 2012

Conversely, if n + K erB € Mk erge then
pg*(n+ Kerf) = plg(n) + Kerd)
=1
Thus g(n) € Kerd. Forif g(n) ¢ Kery, then
L=pg*(n+KerB) = p(g(n)+ Kerd)
= inf{p(g(n) +2) | z € Kery}.

Thus pg(n) = 1. Since Evg(n) > pg(n) = 1, Evg(n) =
1 and thus g(n) € Kery. This is a contradiction. Thus
g(n) € Kerd. Since 7 is quasi-monic, we have pg(n) =
1. Thus n € Kerg. Since Kerg = Imf, there exists
m € xr such that f(m) = n. Thus

f*(m+ Kera) = f(m)JrKerB
= n+K€rﬁ.

Thus n + Kerf3 € My s« - Hence
ﬁKergh* g ﬁ]mf*
This completes the proof. O

Theorem 3.3. Consider the following diagram of fuzzy R-
maps of R-modules :

f g
XM — 7NN <5 W

oo b

py 5 ovp I &

where the rows are exact and the squares are commutative.
If f is epic, then the map

f1" Booker(@) = Vooker(f)
defined by

fI*(v + Ima) = fi(v) + Imp
is a fuzzy linear map.

Proof. First we prove that fI* is well-defined. Let v +
Ima = v' + Imé. Then

v="1"+2z(z € Ima).
Thus

fi)+ImB = f1(v' +x)+ImpB
= f1(0") + f1(2) + Imp.

Since € Ima, there exists m € M such that &(m) = z.
Thus

f1(z) = fra(m) = Bf(m).
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So
fi(z) € Imp.

Thus f1(v) + ImfB = f1(v') + Imf. Thus f1* is well-
defined. On the other hand,
A0+ Ima) + (v + Ima)]

= fi*(v+0 + Ima)
fi(v+0') + Imf
A1) + f1(v)) + Imp
= (fi(v) +ImP) + (f1(v)) + Imp3)
= fl*(v + Ima) + fl*(v’ + Ima).

For any r € R,

fl*(r(v—i—fmd)) = fl*(rv—i—lmd)
fl(rv)JrImB
rfi(v) + Img
= r[fi(v) + Imf]

= rfi*(v+ Ima).

Thus f;* is a linear map. To prove that f;* is a fuzzy linear
map, we must show that

vfi*(v+ Im@) > fi(v + Im@)

for all v + Ima& € ficokera- Let v + Ima be any element
of KCokers- Then

7f (v + Im@) = v(f1(v) + Imp3).
If f1(v) € Imf, then

71" (v + Im@) 7(f1(v) + Imp)
= v(0)
= 1
> v+ Ima).
If f1(v) ¢ Imf3, then
vfi*(v 4+ Im@)
= o(fi(v) + I'mp)

inf{v(z) | z € fi(v) + Imf}
inf{v(f1(v) +y) | y € ImB}
inf{v(f1(v) + B(u) | u € N}
inf{v(f1(v) + Bf(m)) | m € M} [f is epic]
(f1(v)
(
(
(

inf{v(f1(v) + fra(m)) |m e M}
inf{u(f1 (0 + a(m))) | m & M)

> inf{p(v+ a(m)) |me M}
= inf{u(v+2) | z € Ima}
= inf{p(z) |z € v+ Ima}
= g(v+ Ima).
Hence fl* is a fuzzy linear map. O
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Theorem 3.4. Consider the following diagram of fuzzy R-
maps of R-modules :

where the rows are exact and the squares are commutative.
If f and g are epic, then the following sequence

_ f~* _ g"* _
HCoker(a) — VCok:eT(B) = gCoker(’y)

is exact.

Proof. By Theorem 3.3, we can define the fuzzy linear
map
g* Dooker() — ECoker(%)
by
g1*(n+ImpB) = g1 (n) + Im7

To prove that the given sequence in Theorem 3.4 is exact,
we must show that

VImfI* - VKergI*'

Letp+ Imp € Vkergi+» then

Egi*(p+ImB) = E(q(p)+ImA)
1

If g1 (p) € Im?, then there exists w € W such that y(w) =
g1(p). Since g is epic, there exists n € N such that g(n) =
w. Thus

vg(n)
= g1B(n).

g1(p)

Thus p — B(n) € Kergy. Since Kerg; = Imfi, there
exists v € V such that f(v) = p — B8(n). Thus

fi(v) + Imp i
p—B(n)+ImpB
= p+Imp.

f17 (v + Ima)

Hence
p+Imp e Ul fre-

If g1(p) ¢ ImA, then
1 = ggi*(erImB)
E(g1(p) + Im7)

inf{€(g1(p) + 2) | z € Im7}
Eaq1(p).

IN

Thus £g1(p) = 1. Sop € Kerg;. Since Kerg; = Imfi,
there exists v € V such that f;(v) = p. Thus

fi"lv+1Ima) = fi(v) + Imp
= p+ Imp.
Hence _
p+Imp e DImfI*
and hence

Vkergi» - Vlm i

Conversely let p + I mp3 be any element of oy, ... Then
there exists v + Ima € [icoker(a) Such that

f*(w+ Imé) = fi(v) + ImB = p + Im}.
Thus f,(v) — p € Imf. So there exists n € N such that
B(n) = f1(v) — p. If g1(p) € ImA, then
Egi*(p+1ImP) = E(gi(p) + ImA)
= £(0)
= 1.
Let g1(p) ¢ Im#%. Since fi(v) € Ime = Kergi,
Eg1f1(v) = 1. Also Since fia(m) € Imf, = Kergi,
Egqifia(m) =1 forall m € M. Thus we have
Egr*(p + Imp) Eg1*(f1(v) = B(n) + Imp)
= E91*(f1(v) + Imp)

E(grfr(v) +Im7)
= inf{&(g1f1(v) + 2) | z € Im7}
inf{&(g1f1(v) +v(w)) |w € W}
inf{min{&Eg; f1(v),Ey(w)} | w € W}
inf{€v(w) | w € W}
= inf{€vg(n) |n € N} [g is epic]

inf{Evgf(m) | m e M} [f is epic]
— inf{EqBf(m) | m € M}
inf{€g1 fra(m) | m e M}
1.

\%

Thus
Eqi*(p+ImpB) =1
and thus
p+Imp € Ukerg,«.
Hence
DImfI* - Viergi-
This completes the proof. O

Lemma 3.5. Consider the following diagram of fuzzy R-
maps of R-modules :
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where the rows are exact and the squares are commutative.
If g is epic, then for each w € pgers, there exist n € N
and v € V such that

g(n) = w and f1(v) = B(n).

Proof. Let w be any element of pger5. Then Ev(w) =
1. Since § is epic, there exists n € N such that g(n) = w.
Thus

EqB(n) = Evg(n)
= &(w)
- 1.

Thus
B(n) € Kerg.
Since Kergy = Imfl, we have
B(n) € Im fi.
Hence there exists v € V such that f1(v) = B(n). O

Lemma 3.6. Consider the following diagram of fuzzy R-
maps of R-modules :

XM —

py 5 ovp I &g

where the rows are exact and the squares are commutative.
If f and g are epic, then

1. ImpB C Imf;.

2. fi(Ima) = Imp.

Proof. 1. Letp € Im@. Then there exists n € ny such
that 3(n) = p. Since f is epic, there exists m € x s such
that f(m) = n. Thus

p=Bf(m) = fra(m).

Sop e Imfl. Hence Imf3 C Imfl.
2. Let v € Ima. Then there exists m € xas such that
a(m) = v. Thus

fi(v) = fia(m) = Bf(m).
Hence ~ ~
fiIma) C Img.

On the other hand, let p € T mB . Then there exists n € N
such that (n) = p. Since f is epic, there exists m € M
such that f(m) = n. Thus fia(m) = 8f(m) = B(n) =
p. Hence

pE fl(Ima).

This completes the proof. O
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Theorem 3.7. Consider the following diagram of fuzzy R-
maps of R-modules :

XM — 71N - 4%

BT

Hyv i) vp i) 55'

where the rows are exact and the squares are commutative.
If f and g are epic, and if f; is monic, then the map

h: PKery — HCokera

defined by
h(w) = v + Ima,

where g(n) = w, fi(v) = B(n) are given by Lemma 3.5,
is a zero fuzzy linear map and h(w) does not depend on the
choice of n and v.

Proof. Let w be any element of px.,5 and let g(n) =
w, g(n') = w, B(n) = f((v) and B') = 1(v') (mn' €
N and v,v’ € V). Then h(w) = v + I'ma and h(w) =
v' + Ima, and also g(n —n') = 0and son —n' € Kerg.
Since Kerg = Imf,n —n' € Imf. Thus there exists
m € M such that f(m) =n — n'. Thus

fia(m) = Bf(m)
= Bn -
= filv=12").

Since f; is monic, a(m) = v — v’. Thus

v+ a(m) + Ima

v+ Ima.

v+ Ima =

Let w be any element of pg.,5 and let h(w) = v+Ima.
Then there existn € N and v € V such that g(n) = w and
B(n) = fi1(v). Since f is epic, there exists m € M such
that f(m) = n. Thus

fia(m) = Bf(m)

Thus
h(w) = a(m) + Ima =Ima =0
by definition of h. Hence h is a zero map.

O

Theorem 3.8 ([7]). Consider the following diagram of
fuzzy R-maps of R-modules :

f g
XM — 71N <5 W

T

wy L vp — 55
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where the rows are exact and the squares are commutative.
If f1 : py — vp is quasi-monic, then the sequence of
fuzzy R-maps,
f* gl
XKera — NKerd — PKery
is exact at 9y, 5.

From Theorem 3.4 and Theorem 3.8, we have the fol-
lowing theorem.

Theorem 3.9. Consider the following diagram of fuzzy R-
maps of R-modules :

where the rows are exact and the squares are commutative.
If f1 is monic and if g7 is quasi-monic, and if f and g are
epic, then the sequence of fuzzy R-maps,

T

I g
XKera — NKerd 7 PKery

h _ fir ar &
= fCokera — VCoker(8) — ECoker(%)
is exact.

Proof. By Theorem 3.4 and Theorem 3.8, we must show
that

(1) p1mg~* = PKerh and (2) p’Ime = laKerfI*'

(1). Let = be any element of py,,~. Then there exists
Y € Nk Such that

g (y) = gly) = x.

Since h is a zero map,

Thus = € py,.,. - Hence

Prmgs S Prerk
Conversely let x be any element of p_ 7. Then
ph(x) = 1.
Since * € prerys
Ev(z) =1.

Since g is epic, there exists y € ny such that g(y) = z.
Since

EqBy) = Evgly) =1,
we have
B(y) € VKerg -

Since ¢ is quasi-monic, Vkerg, = vpr, where P’ = {x |
v(xz) = 1}. Thus

vB(y) = 1.
So

ye T]Kerﬁ
and g(y) = x. Thus

T € plmg~*'

Hence
Pieri S Prmg--
This completes the proof of (1).
(2). To prove (2), we must show that

laKerfI* = {O}a

since h is a zero map. Let v + Ima be any element of
Pcer i+ Then

vf1*(v+Ima) = o(fi(v)+ImpB)
1.

If fi(v) € Imp, then there exists n € N such that
B(n) = fi1(v). Since f is epic, there exists m € M such
that f(m) = n. Thus

filv) = B(n)
Bf(m)
= fia(m).
Since f; is monic, v = a(m). Thus v + Im& = a(m) +
Ima =Ima = 0.

If f1(v) ¢ Imp, then

1 = uf1"(v+Ima)

= (fi(v) + ImP)
inf{v(f1(v) + 2) | z € Imp3}
vfi(v).

IN

Thus

vfi(v) = 1.
Thus

v E Kerfl.

Since fl is monic, we have v = 0. Hence
v+ Ima = Ima=0.
In any case, we have
v+ Ima =Ima=0.

Hence
ﬂKerf{* = {O}
This completes the proof of (2). O
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