DOI QR코드

DOI QR Code

Modeling and Analysis of Robotic Foot Mechanism Based on Truss Structure

트러스 구조를 기반으로 한 로봇 발 메커니즘 모델링 및 특성 분석

  • 김병호 (경성대학교 메카트로닉스공학과 생체모방및지능로봇 연구실)
  • Received : 2012.04.20
  • Accepted : 2012.05.16
  • Published : 2012.06.25

Abstract

This paper presents a robotic foot mechanism based on truss structure for walking robots and analyzes its effectiveness for compliant walking. The specified foot mechanism has been modeled by observing the structure and behavior of human foot. The frame of bone used in the human foot is considered as a truss, and the ligaments of the human foot are represented as a simple stiffness element. So such a robotic foot has an advantage to moderate the impact of foot when a walking robot takes a step. As a result, it is practically expected that the proposed robotic foot mechanism can contribute to reduce the physical fatigue of walking robots.

본 논문에서는 보행 로봇을위한 트러스 구조의 로봇 발 메커니즘을 제시한 후, 제시된 로봇 발 메커니즘의 특성을 분석하였다. 제시된 로봇 발 메커니즘은인간의 발의 구조적인 특징을 관찰하여 모델링 되었다. 특히, 인간의 발에 사용되고 있는 뼈대는 트러스로 나타내었고, 뼈대에 연결되어 있는 다양한 인대는 간단한 강성 요소로서 나타내었다. 따라서 이러한 로봇 발은 보행 로봇이 발걸음을 옮기는 과정에서 발에 작용되는 충격을 완화시킬 수 있는 장점을 갖는다. 결과적으로, 제안된 로봇 발 메커니즘은 보행로봇의 보행피로를 줄이는데 기여할 수 있다.

Keywords

References

  1. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K, Fujimura, "The intelligent ASIMO: system overview and integration," Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2478-2483, 2002.
  2. Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H.-O. Lim, and A, Takanishi, "Development of a new humanoid robot, WABIAN-2," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2478-2483, 2002.
  3. I. W. Park, J.-Y. Kim, J. Lee, and J.-H. Oh, "Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot-3: HUBO)," Proc. of IEEERAS Int. Conf. on Humanoid Robots, pp. 321-325, 2005.
  4. BostonDynamics, http://www.bostondynamics.com
  5. S.-W. Kim and D. H. Kim, "Design of Leg Length for a Legged Walking Robot Based on Theo Jansen Using PSO," Jour. of Korean Institute of Intelligent Systems, vol. 21, no. 5, pp. 660-666, 2011. https://doi.org/10.5391/JKIIS.2011.21.5.660
  6. M. Davis, Foot Design for a Humanoid Robot, The University of Queensland, 2004.
  7. J. Li, Q. Huang,W. Zhang, Z. Yu, and K. Li, "Flexible foot design for a humanoid," Proc. of IEEE Int. Conf. Automation and Logistics, pp. 1414-1419, 2008.
  8. J.-T. Seo and B.-J, Yi, "Modeling and Analysis of a Biomimetic Foot Mechanism," Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1472- 1477, 2009.
  9. S. K. Au and H. M. Herr, "Powered ankle-foot prosthesis," IEEE Robotics & Automation Magazine, vol. 15, no. 3, pp. 52-59, 2008. https://doi.org/10.1109/MRA.2008.927697
  10. C. C. Norkin and P. K. Levangie, Joint structure & function, F.A. Davis Company, 1992.
  11. Y.-T. Kim, S.-H. Noh, and H. J. Lee, "Walking and Stabilization Algorithm of Biped Robot on the Uneven Ground," Jour. of Korean Institute of Intelligent Systems, vol. 15, no. 1, pp. 59-64, 2005. https://doi.org/10.5391/JKIIS.2005.15.1.059

Cited by

  1. Work Analysis of Compliant Leg Mechanisms for Bipedal Walking Robots vol.10, pp.9, 2013, https://doi.org/10.5772/56926
  2. Contact Repulsion of Robotic Foot and Its Influence on Knee and Hip Joints vol.23, pp.1, 2013, https://doi.org/10.5391/JKIIS.2013.23.1.12
  3. Work Consideration of Leg Joints of Bipedal Robots vol.23, pp.3, 2013, https://doi.org/10.5391/JKIIS.2013.23.3.238