DOI QR코드

DOI QR Code

Antioxidant and Physiological Activities of Capsicum annuum Ethanol Extracts

고추 에탄올 추출물의 항산화 효과 및 생리활성에 관한 연구

  • Kim, Hun-Joong (Division of Food Bioscience & Technology, College of Life Sciences & Biotechnology, Korea University) ;
  • Hong, Chung-Oui (Division of Food Bioscience & Technology, College of Life Sciences & Biotechnology, Korea University) ;
  • Nam, Mi-Hyun (Division of Food Bioscience & Technology, College of Life Sciences & Biotechnology, Korea University) ;
  • Ha, Young-Min (Division of Food Bioscience & Technology, College of Life Sciences & Biotechnology, Korea University) ;
  • Lee, Kwang-Won (Division of Food Bioscience & Technology, College of Life Sciences & Biotechnology, Korea University)
  • 김헌중 (고려대학교 생명과학대학 식품공학부) ;
  • 홍충의 (고려대학교 생명과학대학 식품공학부) ;
  • 남미현 (고려대학교 생명과학대학 식품공학부) ;
  • 하영민 (고려대학교 생명과학대학 식품공학부) ;
  • 이광원 (고려대학교 생명과학대학 식품공학부)
  • Received : 2011.08.25
  • Accepted : 2012.06.11
  • Published : 2012.06.30

Abstract

The goal of this study is to determine the activities of antioxidants and antiglycation from the extracts of various Capsicum annum (known as pepper) ethanolic extract (CAE). We tested the extracts of Capsicum annum seeds and pericarps using 70% ethanol. The CAE showed antioxidant activities in a 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation assay, 1,1-diphenyl-2-picrylhydrazyl free radical-scavenging assay, ferric-reducing antioxidant power assay, total flavonoid content, and total polyphenol content. Also, the physiological activities of CAE on glycation inhibition activities, anti-${\alpha}$-glucosidase activities, and tyrosinase activities were measured. As a result, green and red Capsicum annuum seeds show higher levels of antioxidant activities. In addition, the physiological activities are also more effective in the seeds than in the plant pericarps. A radar chart proves that antioxidants and physiological activities are more effective coming from the seeds. And the red Capsicum annuum seeds are more effective than the green ones.

고추(Capsicum annuum)의 항산화 효과 및 생리활성 측정을 통하여 기능성식품의 소재로 활용하기 위한 기초 연구를 진행하였다. 폴리페놀 함량은 과육보다는 씨에서 높게 나타났다. 그러나 플라보노이드 함량은 풋고추 과육에서 높은 함량을 보였다. DPPH radical 소거활성에서 $SC_{50}$값은 홍고추 씨 $1,935{\pm}162\;{\mu}g\;DM/mL$, ABTS radical 소거활성에서는 $SC_{50}$값이 풋고추 씨 $3,354{\pm}76\;{\mu}g\;DM/mL$로 과육에 비해 높았다. 최종당화산물(AGEs) 생성 억제활성은 풋고추와 홍고추 씨, 풋고추와 홍고추 과육 순으로, ${\alpha}$-glucosidase 저해활성은 풋고추 과육, 홍고추 씨, 홍고추 과육, 풋고추 씨 순이었다. Tyrosinase 억제활성은 홍고추와 풋고추 씨, 홍고추와 풋고추 과육 순이었다. 종합해보면 기능성식품 소재로서 홍고추 씨 및 풋고추 씨가 과육보다 활용도가 높은 것으로 결론지을 수 있다.

Keywords

References

  1. Wolff SP, Jiang ZY, Hunt JV. 1991. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med 10: 339-352. https://doi.org/10.1016/0891-5849(91)90040-A
  2. Lee JN, Kim SW, Yoo YK, Lee GT, Lee KK. 2006. Antiwrinkle effect of Morinda citrifolia (Noni) extracts. J Soc Cosmet Scientists Korea 32: 227-231.
  3. Roberfroid MB. 2000. Concepts and strategy of functional food science: the European perspective. Am J Clin Nutr 71: 1660s-1664s.
  4. Branen AL. 1975. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc 52: 59-63. https://doi.org/10.1007/BF02901825
  5. Giese J. 1996. Antioxidants: tools for preventing lipid oxidation. Food Technol-Chicago 50: 73-81.
  6. Howard LR, Smith RT, Wagner AB, Villalon B, Burns EE. 1994. Provitamin-a and ascorbic-acid content of fresh pepper cultivars (Capsicum annuum) and processed jalapenos. J Food Sci 59: 362-365. https://doi.org/10.1111/j.1365-2621.1994.tb06967.x
  7. Lee Y, Howard LR, Villalon B. 1995. Flavonoids and antioxidant activity of fresh pepper (Capsicum annuum) cultivars. J Food Sci 60: 473-476. https://doi.org/10.1111/j.1365-2621.1995.tb09806.x
  8. Appel HM, Govenor HL, D'Ascenzo M, Siska E, Schultz JC. 2001. Limitations of Folin assays of foliar phenolics in ecological studies. J Chem Ecol 27: 761-778. https://doi.org/10.1023/A:1010306103643
  9. Maksimovic Z, Malencic D, Kovacevic N. 2005. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour Technol 96: 873-877. https://doi.org/10.1016/j.biortech.2004.09.006
  10. Wang KJ, Zhang YJ, Yang CR. 2005. Antioxidant phenolic compounds from rhizomes of Polygonum paleaceum. J Ethnopharmacol 96: 483-487. https://doi.org/10.1016/j.jep.2004.09.036
  11. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  12. Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal Biochem 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  13. Stephan ZF, Yurachek EC. 1993. Rapid fluorometric assay of LDL receptor activity by DiI-labeled LDL. J Lipid Res 34: 325-330.
  14. McPherson JD, Shilton BH, Walton DJ. 1988. Role of fructose in glycation and cross-linking of proteins. Biochemistry-US 27: 1901-1907. https://doi.org/10.1021/bi00406a016
  15. Puls W, Keup U, Krause HP, Thomas G, Hoffmeister F. 1977. Glucosidase inhibition. A new approach to the treatment of diabetes, obesity, and hyperlipoproteinaemia. Naturwissenschaften 64: 536-537. https://doi.org/10.1007/BF00483562
  16. Wong G, Pawelek J. 1973. Control of phenotypic expression of cultured melanoma cells by melanocyte stimulating hormones. Nat New Biol 241: 213-215. https://doi.org/10.1038/241213a0
  17. Li QBA, He N, Wang ZY, Yang CX, Lu YH, Sun DH, Wang YP, Shao WY. 2009. Isolation and identification of polyphenolic compounds in Longan pericarp. Sep Purif Technol 70: 219-224. https://doi.org/10.1016/j.seppur.2009.09.019
  18. Ribeiro SMR, Barbosa LCA, Queiroz JH, Knodler M, Schieber A. 2008. Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chem 110: 620-626. https://doi.org/10.1016/j.foodchem.2008.02.067
  19. Dragsted LO. 2003. Antioxidant actions of polyphenols in humans. Int J Vitam Nutr Res 73: 112-119. https://doi.org/10.1024/0300-9831.73.2.112
  20. Sasaki H, Matsumoto M, Tanaka T, Maeda M, Nakai M, Hamada S, Ooshima T. 2004. Antibacterial activity of polyphenol components in oolong tea extract against Streptococcus mutans. Caries Res 38: 2-8. https://doi.org/10.1159/000073913
  21. Hamauzu D, Za Y. 2003. Phenolic compounds, ascorbic acid, carotenoids and antioxidant properties of green, red and yellow bell peppers. J Food Agric Environ 1: 22-27.
  22. Tseng TH, Kao ES, Chu CY, Chou FP, Lin Wu HW, Wang CJ. 1997. Protective effects of dried flower extracts of Hibiscus sabdariffa L. against oxidative stress in rat primary hepatocytes. Food Chem Toxicol 35: 1159-1164. https://doi.org/10.1016/S0278-6915(97)85468-3
  23. Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. 1995. The relative antioxidant activities of plantderived polyphenolic flavonoids. Free Radic Res 22: 375-383. https://doi.org/10.3109/10715769509145649
  24. Heim KE, Tagliaferro AR, Bobilya DJ. 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13: 572-584. https://doi.org/10.1016/S0955-2863(02)00208-5
  25. Guo CJ, Yang JJ, Wei JY, Li YF, Xu J, Jiang YG. 2003. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr Res 23: 1719-1726. https://doi.org/10.1016/j.nutres.2003.08.005
  26. Gogorcena Y, Cantin CM, Moreno MA. 2009. Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Agric Food Chem 57: 4586-4592. https://doi.org/10.1021/jf900385a
  27. Sato T, Iwaki M, Shimogaito N, Wu X, Yamagishi S, Takeuchi M. 2006. TAGE (toxic AGEs) theory in diabetic complications. Curr Mol Med 6: 351-358. https://doi.org/10.2174/156652406776894536
  28. Ahmed N. 2005. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract 67: 3-21. https://doi.org/10.1016/j.diabres.2004.09.004
  29. Kubo I, Kinst-Hori I. 1999. Flavonols from saffron flower: Tyrosinase inhibitory activity and inhibition mechanism. J Agric Food Chem 47: 4121-4125. https://doi.org/10.1021/jf990201q
  30. Kim JA, Lee JM, Shin DB, Lee NH. 2004. The antioxidant activity and tyrosinase inhibitory activity of phloro-tannins in Ecklonia cava. Food Sci Biotechnol 13: 476-480.

Cited by

  1. The Physicochemical Characteristics and Antioxidant Properties of Commercial Nurungji Products in Korea vol.32, pp.5, 2016, https://doi.org/10.9724/kfcs.2016.32.5.575
  2. Recent development of plant products with anti-glycation activity: a review vol.5, pp.39, 2015, https://doi.org/10.1039/C4RA14211J
  3. Comparative Study of Native Flowers for Anti-oxidative Effects in Korea vol.26, pp.4, 2013, https://doi.org/10.7732/kjpr.2013.26.4.433
  4. 고추씨를 첨가한 저염 고추장의 품질 분석 vol.21, pp.6, 2012, https://doi.org/10.20878/cshr.2015.21.6.016
  5. Comparisons of the Physicochemical Characteristics, Antioxidant Properties, and Consumer Acceptance of Greek-Style Yogurt Enhanced with Black Tea Syrup Instead of Sugar Syrup vol.31, pp.1, 2012, https://doi.org/10.17495/easdl.2021.2.31.1.36