DOI QR코드

DOI QR Code

Comparison of Growth Performance and Whole-body Amino Acid Composition in Red Seabream (Pagrus major) Fed Free or Dipeptide Form of Phenylalanine

  • Kim, Sung-Sam (Department of Marine Biomedical Science, Jeju National University) ;
  • Rahimnejad, Samad (Department of Marine Biomedical Science, Jeju National University) ;
  • Song, Jin-Woo (Department of Marine Biomedical Science, Jeju National University) ;
  • Lee, Kyeong-Jun (Department of Marine Biomedical Science, Jeju National University)
  • Received : 2012.02.01
  • Accepted : 2012.06.05
  • Published : 2012.08.01

Abstract

This study was conducted to evaluate the efficacy of the dipeptide form of phenylalanine as a new source of amino acid in terms of growth performance and whole-body amino acid composition in comparison to the free form for red seabream (Pagrus major). Fish ($1.46{\pm}0.001g$) were fed four isonitrogenous and isocaloric experimental diets containing 0.7 or 1.4% phenylalanine either in free or dipeptide form. A feeding trial was carried out in three replicates and the fish were fed to apparent satiation for six weeks. At the end of the feeding trial, feed intake of fish was influenced by both phenylalanine form and level and significantly higher values were obtained at an inclusion level of 0.7% and by the use of dipeptide form. However, the other growth parameters did not significantly differ among treatments. Whole-body amino acid compositions revealed no significant changes in concentrations of both essential and non-essential amino acids regardless of the increase in phenylalanine levels or the use of its different forms. The finding in this study indicates that juvenile red seabream can utilize dipeptide phenylalanine as efficiently as free form without any undesirable effects on growth performance or whole-body amino acid composition.

Keywords

References

  1. Abidi, S. A. 1997. The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 113:332-340. https://doi.org/10.1016/S0016-5085(97)70112-4
  2. Abidi, S. F. and M. A. Khan. 2007. Dietary leucine requirement of fingerling Indian major carp, Labeo rohita (Hamilton). Aquac. Res. 38:478-486. https://doi.org/10.1111/j.1365-2109.2007.01687.x
  3. Akiyama, T. 1987. Studies on the essential amino acids and scoliosis caused by tryptophan deficiency of chum salmon fry. Ph.D. Thesis. University of Kyushu, Fukuoka, Japan.
  4. AOAC (Association of Official Analytical Chemists). 1995. Official methods of analysis. Association of official Analytical Chemists, Arlington, Virginia, USA.
  5. Boge, G., A. Rigal and G. Peres. 1981. Rates of in vivo intestinal absorption of glycine and glycyglycine by rainbow trout (Salmo gairdneri R.). Comp. Biochem. Physiol. 69:455-459. https://doi.org/10.1016/0300-9629(81)93004-8
  6. Cahu, N. and J. L Zambonino Infante. 1995. Effect of the molecular-form of dietary nitrogen supply in sea bass larvae-response of pancreatic-enzymes and intestinal peptidases. Fish Physiol. Biochem. 14:209-214. https://doi.org/10.1007/BF00004311
  7. Carvalho, A. P., A. M. Escaffre, A. Oliva-Teles and P. Bergot. 1997. First feeding of common carp larvae on diets with high levels of protein hydrolysates. Aquac. Int. 5:361-367. https://doi.org/10.1023/A:1018368208323
  8. Carvalho, A. P., R. Sa, A. Oliva-Teles and P. Bergot. 2004. Solubility and peptide profile affect the utilization of dietary protein by common carp (Cyprinus carpio) during early larval stages. Aquaculture 234:319-333. https://doi.org/10.1016/j.aquaculture.2004.01.007
  9. Chance, R. E., E. T. Mertz and J. E. Halver. 1964. Nutrition of salmonid fishes. Isoleucine, leucine, valine and phenylalanine requirements of Chinook salmon and interrelations between isoleucine and leucine for growth. J. Nutr. 83:177-185.
  10. Dabrowski, K. R. 1986. Ontogenetical aspects of nutritional requirements in fish. Comp. Biochem. Physiol. A 85:639-655. https://doi.org/10.1016/0300-9629(86)90272-0
  11. Dabrowski, K., K. Lee and J. Rinchard. 2003. The smallest vertebrate, teleost fish, can utilize synthetic dipeptide-based diets. J. Nutr. 133:4225-4229.
  12. Daniel, H. 2004. Molecular and integrative physiology of intestinal peptide transport. Annu. Rev. Physiol. 66:361-384. https://doi.org/10.1146/annurev.physiol.66.032102.144149
  13. Doring, F., J. Walter, J. Will, M. Focking, M. Boll, S. Amasheh, W. Clauss and H. Daniel. 1998. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J. Clin. Invest. 101:2761-2767. https://doi.org/10.1172/JCI1909
  14. Ganapathy, V., M. Brandsch and F. H. Leibach. 1994. Intestinal transport of amino acids and peptides. In: Physiology of gastrointestinal tract (Ed. L. R. Johnson and J. Christensen). Raven Press, New York, USA. pp. 1773-1794.
  15. Grimble, G. 1994. The significance of peptides in clinical nutrition. Annu. Rev. Nutr. 14:419-447. https://doi.org/10.1146/annurev.nu.14.070194.002223
  16. Harada, K. 1989. Feeding attraction activities of L-dipeptides for abalone, oriental weatherfish and yellowtail. Nippon. Suisan. Gakkaishi. 55:1629-1634. https://doi.org/10.2331/suisan.55.1629
  17. Hauler, R. C. and C. G. Carter. 2001a. Reevaluation of the quantitative dietary lysine requirements of fish. Rev. Fish. Sci. 9:133-163. https://doi.org/10.1080/20016491101735
  18. Hauler, R. C. and C. G. Carter. 2001b. Lysine deposition responds linearly to marginal lysine intake in Atlantic salmon (Salmo salar L.) parr. Aquac. Res. 32(Suppl. 1):147-156. https://doi.org/10.1046/j.1355-557x.2001.00012.x
  19. Kaushik, S. J. and K. Dabrowski. 1983. Postprandial metabolic changes in larval and juvenile carp (Cyprinuscarpio). Reprod. Nutr. Dev. 23:223-234. https://doi.org/10.1051/rnd:19830207
  20. Kim, K. I., T. B. Kayes and C. H. Amundson. 1991. Purified diet development and re-evaluation of the dietary protein requirement of fingerling rainbow trout (Oncorhynchus mykiss). Aquaculture 96:57-67. https://doi.org/10.1016/0044-8486(91)90139-X
  21. Kurokawa, T. and T. Suzuki. 1998. Development of intestinal brush border aminopeptidase in the larval Japanese flounder Paralichthys olivaceus. Aquaculture. 162:113-124. https://doi.org/10.1016/S0044-8486(98)00171-9
  22. Kwasek, K., Y. Zhang and K. Dabrowski. 2010. Utilization of dipeptide/protein based diets in larval and juvenile Koi carp-post-prandial free amino acid levels. J. Anim. Physiol. Anim. Nutr. 94:35-43. https://doi.org/10.1111/j.1439-0396.2008.00877.x
  23. Li, P., K. Mai, J. Trushenski and G. Wu. 2008. New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids DOI: 10.1007/s00726-008-0171-1.
  24. Mohn, S., A. M. Gillis, P. J. Moughan and C. F. Lange. 2000. Influence of dietary lysine and energy intakes on body protein deposition and lysine utilization in the growing pig. J. Anim. Sci. 78:1510-1519.
  25. Murai, T. 1982. Effect of coating amino acids with casein supplmented to gelatin diet on plasma free amino acids of carp. Bull. Jpn. Soc. Sci. Fish. 48:703-710. https://doi.org/10.2331/suisan.48.703
  26. Murai, T., Y. Hirasawa, T. Akiyama and T. Nose. 1983. Effects of dietary pH and electrolyte concentration on the utilization of crystaline amino acids in fingerling carp. Bull. Jpn. Soc. Sci. Fish. 49:1377-1380. https://doi.org/10.2331/suisan.49.1377
  27. Murai, T., H. Ogata, T. Takeuchi, T. Watanabe and T. Nose. 1984. Composition of free amino acid in excretion of carp fed amino acid diets and casein-gelatin diets. Bull. Jpn. Soc. Sci. Fish. 50:1957-1958. https://doi.org/10.2331/suisan.50.1957
  28. Ngamsnae, P., S. S. De Silva and R. M. Gunasekera. 1999. Arginine and phenylalanine requirement of juvenile silver perch Bidyanus bidyanus and validation of the use of body amino acid composition for estimating individual amino acid requirements. Aquac. Nutr. 5:173-180. https://doi.org/10.1046/j.1365-2095.1999.00102.x
  29. Nose, T. 1979. Summary report on the requirements of essential amino acids for carp. In: Finfish Nutrition and Fish feed Technology (Ed. K. Tiews and J. E. Halver). Heenemann GmbH, Berlin, Germany. pp. 145-156
  30. NRC. 1993. National research council nutrient requirements of fish. National Academy Press, Washington, DC, USA.
  31. Pinto, W., L. Figueira, M. T. Dinis and C. Aragao. 2008. How does fish metamorphosis affect aromatic amino acid metabolism? Amino Acids doi:10.1007/s00726-008-0045-6.
  32. Robinson, E. H., W. E. Poe and R. P. Wilson. 1984. Effects of feeding diets containing an imbalance of branched-chain amino acids on fingerling channel catfish. Aquaculture 37:51-62. https://doi.org/10.1016/0044-8486(84)90043-7
  33. Rodehutscord, M., S. Jacobs, M. Pack and E. Pfeffer. 1995. Response of rainbow trout (Oncorhynchus mykiss) growing from 50 to 170 g to supplements of either l-arginine or l-threonine in a semipurified diet. J. Nutr. 125:970-975.
  34. Rønnestad, I. and H. J. Fyhn. 1993. Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev. Fish. Sci. 1:239-259. https://doi.org/10.1080/10641269309388544
  35. Ronnestad, I., A. Thorsen and R. N. Finn. 1999. Fish larval nutrition: a review of recent advances in the roles of amino acids. Aquaculture 177:201-216. https://doi.org/10.1016/S0044-8486(99)00082-4
  36. Rønnestad, I., L. E. C. Conceicaõ, C. Aragaõ and M. T. Dinis. 2000. Free amino acids are absorbed faster and assimilated more efficiently than protein in postlarval Senegal sole (Solea senegalensis). J. Nutr. 130:2809-2812.
  37. Ronnestad, I., S. K. Tonheim, H. J. Fyhn, C. R. Rojas-Garcia, Y. Kamisaka and W. Koven. 2003. The supply of amino acids during early feeding stages of marine fish larvae: a review of recent findings. Aquaculture 227:147-164. https://doi.org/10.1016/S0044-8486(03)00500-3
  38. Rust, M. B., R. W. Hardy and R. R. Stickney. 1993. A new method for force feeding larval fish. Aquaculture 116:341-352. https://doi.org/10.1016/0044-8486(93)90418-X
  39. Santiago, C. B. and R. T. Lovell. 1988. Amino acid requirements for growth of Nile tilapia. J. Nutr. 118:1540-1546.
  40. Susenbeth, A., T. Dickel, A. Diekenhorst and D. Hohler. 1999. The effect of energy intake, genotype, and body weight on protein retention in pigs when dietary lysine is the first-limiting factor. J. Anim. Sci. 77:2985-2989.
  41. Tesser, M., B. F. Terjesen, Y. Zhang, M. C. Portella and K. Dabrowski. 2005. Free- and peptide-based dietary arginine supplementation for the South American fish pacu (Piaractus mesopotamicus). Aquac. Nutr. 11:443-453. https://doi.org/10.1111/j.1365-2095.2005.00373.x
  42. Verri, T., G. Kottra, A. Romano, N. Tiso, M. Peric, M. Maffia, M. Boll, F. Argenton, H. Daniel and C. Storelli. 2003. Molecular and functional characterisation of the zebrafish (Danio rerio) PEPT1-type peptide transporter. FEBS Lett. 549:115-122. https://doi.org/10.1016/S0014-5793(03)00759-2
  43. Wilson, R. P. 2003. Amino acid requirements of finfish and crustaceans. In: Amino Acids in Animal Nutrition (Ed. J. P. F. D`Mello). CAB International, Wallingford, Oxon, United Kingdom, pp. 427-447.
  44. Zambonino Infante, J. L., C. L. Cahu and A. Peres. 1997. Partial substitution of di- and tripeptides for native proteins in sea bass diet improves Dicentrarchus labrax larval development. J. Nutr. 127:608-614.
  45. Zhang, Y., K. Dabrowski, P. Hliwa and P. Gomulka. 2006. Indispensable amino acid concentrations decrease in tissues of stomachless fish, common carp in response to free amino acid- or peptide-based diets. Amino Acids 31:165-172. https://doi.org/10.1007/s00726-006-0345-7

Cited by

  1. Comparative Evaluation of Extruded and Moist Pellets for Development of High Efficiency Extruded Pellets in Olive Flounder Paralichthys olivaceus vol.47, pp.6, 2014, https://doi.org/10.5657/KFAS.2014.0801
  2. Di- and tripeptide transport in vertebrates: the contribution of teleost fish models vol.187, pp.3, 2017, https://doi.org/10.1007/s00360-016-1044-7
  3. Comparison of Free and Dipeptide Lysine Utilization in Diets for Juvenile Olive Flounder Paralichthys olivaceus vol.17, pp.4, 2014, https://doi.org/10.5657/fas.2014.0433
  4. 4종 돔 추출물의 세포독성 효과 비교 vol.27, pp.9, 2017, https://doi.org/10.5352/jls.2017.27.9.1064