DOI QR코드

DOI QR Code

Spectrofluorimetric determination of free cyanide ion with fluorescent safranine-O

형광시약 Safranine-O를 이용한 유리 시안화 이온의 분광형광법 정량

  • Received : 2012.05.14
  • Accepted : 2012.06.04
  • Published : 2012.06.25

Abstract

A spectrofluorimetric method has been developed for the determination of free $CN^-$ in real samples with fluorescent safranine-O. When safranine-O interacts electrostatistically with $CN^-$, the fluorescent intensity of safranine-O is decreased. Several experimental conditions such as pH of the sample solution and the amount of safranine-O were optimized. $Ag^+$ interfered higher than any other ions. Interference of $Ag^+$ could be disregarded because $Ag^+$ was scarcely contained or mostly complexed with $CN^-$ in selected real samples. With this proposed method, the linear range of $CN^-$ was from 5.0 to 110 ng/mL and the detection limit of $CN^-$ was 2.9 ng/mL. For validating this technique, real samples (Cu, Ag, Au electroplating wastewater, and untreated wastewater in university and in sewage treatment plant) were used. Recovery yields of 91.5%~106.0% were obtained. Based on experimental results, it is proposed that this technique can be applied to the practical determination of free $CN^-$.

Keywords

References

  1. C. N Sawyer, P. L. McCarty, G. F. Parkin, 'Chemistry for Environmental Engineering', 4th ed., 637, McGraw-Hill, New York, U.S.A. 1996.
  2. D. Cacace, H Ashbaugh, N. Kouri, S. Bledsoe, S. Lancaster and S. Chalk, Anal. Chim. Acta, 589, 137-141 (2007). https://doi.org/10.1016/j.aca.2007.02.004
  3. S. Abbasi, R. Valinezhad and H Khani, Spectrochim. Acta A, 77, 112-116 (2010). https://doi.org/10.1016/j.saa.2010.04.035
  4. M. T. Fernndez-Argelles, J. M. Costa-Fernndez, R. Pereiro and A. Sanz-Medel, Anal. Chim. Acta, 491, 27-35 (2003). https://doi.org/10.1016/S0003-2670(03)00794-3
  5. A. Safavi, N. Maleki and H. R. Shahbaazi, Anal. Chim. Acta, 503, 213-221 (2004). https://doi.org/10.1016/j.aca.2003.10.032
  6. J. Lv, Z. Zhang, J. Li and L. Luo, Forensic Sci. Int., 148, 15-19 (2005). https://doi.org/10.1016/j.forsciint.2004.03.032
  7. P. C. do Nascimento, Denise Bohrer and L. M. de Carvalho, Talanta, 48, 341-346 (1999). https://doi.org/10.1016/S0039-9140(98)00252-5
  8. K. Papeovand Z. Glatz, J. Chromatogr. A, 1120, 268-272 (2006). https://doi.org/10.1016/j.chroma.2006.03.030
  9. J. M. G. LaFuente, F. F. Martinez, J. A. V. Perz, S. F. Fernndez and A. Sanz-Medel, Anal. Chim. Acta, 410, 135-142 (2000). https://doi.org/10.1016/S0003-2670(99)00863-6
  10. B. Vallejo-Pecharromm and M. D. Luque de Castro, Analyst, 127, 267-270 (2002). https://doi.org/10.1039/b109326f
  11. V. L. Gmez and J. M. Calatayud, Analyst, 123, 2103-2107 (1998). https://doi.org/10.1039/a803439g
  12. D. L. Recalde-Ruiz, E. Andrs-Garcia and M. E. Diaz-Garcia, Analyst, 125, 2100-2105 (2000). https://doi.org/10.1039/b004765l
  13. A. A. Ensafi and A. Kazemzadeh, Microchem. J., 72, 193-199 (2002). https://doi.org/10.1016/S0026-265X(02)00035-8
  14. Z. Cao, X. He, Z. Gao and L. Peng, Talanta, 49, 377-383 (1999). https://doi.org/10.1016/S0039-9140(98)00386-5
  15. G. D. Sharma, S. K. Sharma and M. S. Roy, Mater. Sci. Eng. B, 100, 13-17 (2003). https://doi.org/10.1016/S0921-5107(02)00586-X
  16. M. L. Gmez, V. Avila, H. A. Montejano and C. M. Previtali, Polymer, 44, 2875-2881 (2003). https://doi.org/10.1016/S0032-3861(03)00212-X