DOI QR코드

DOI QR Code

Carbonation of coal fly ash for construction materials

탄산화 건자재 제조를 위한 석탄 비산회의 탄산화

  • Park, Jun-Young (Department of the Materials Engineering, Kyonggi University) ;
  • Kim, Yoo-Taek (Department of the Materials Engineering, Kyonggi University) ;
  • Kim, Hyun-Jung (Department of the Materials Engineering, Kyonggi University)
  • 박준영 (경기대학교 신소재공학부) ;
  • 김유택 (경기대학교 신소재공학부) ;
  • 김현정 (경기대학교 신소재공학부)
  • Received : 2012.04.13
  • Accepted : 2012.05.29
  • Published : 2012.06.30

Abstract

Carbon dioxide ($CO_2$) could be stored in the form of Ca and Mg compounds including alkaline earth metal by carbonation. The possibility of $CO_2$ storage was tested by using desulfurized ash from fluidized bed type boiler as raw material. Autoclave was used for maintaining the reaction pressure and temperature for the carbonation. The analysis of weight change rate, XRD, and TG/DTA proved that more than 15 % of carbonation rate was obtained under 10 $kgf/cm^2$ and $120^{\circ}C$-10 min.

이산화탄소($CO_2$)를 폐기물에 안정하게 고정화시키기 위하여 탄산화 가능한 알칼리 토금속인 Ca와 Mg 성분을 다량 포함한 석탄재에 CO2를 저장하여 건자재의 제조 가능성을 연구하였다. 초기 실험으로는 Ca 산화물과 수화물을 사용하였으며, $CO_2$ 저장 반응기로는 Autoclave를 사용하여 일정한 압력과 온도에서 조성을 변화시켜 탄산화를 시행하였다. 탄산화 된 시편의 무게변화율, X-선 회절분석 및 시차열분석을 통하여 관찰한 결과 $Ca^{2+}$의 이온용출 반응에 의해 탄산화가 진행되었음을 확인할 수 있었다. 10 $kgf/cm^2$의 압력과 $120^{\circ}C$에서 10분간 온도를 유지한 분위기에서 폐기물자원 원료에 15 % 이상의 탄산화율을 얻는 것이 가능할 것으로 판단되었다.

Keywords

References

  1. J.S. Lee, L.H. Xu and H.T. Kim, "A carbon dioxide sequestration assessment of the serpentine", J. Kor. Energy & Climate Change Soc. (2007) 55.
  2. W.K. Choi, S.H. Moon, T.H. Cho and J.K. Lee, "Heat treatment and characterization of serpentine for $CO_{2}$ sequestration by mineral carbonation", Trans. Kor Hydrogen and New Energy Soc. 16[1] (2005) 74.
  3. N.H. Jang, J.S. Lee, L.H. Xu and H.T. Kim, "Research on using mineral supercritical carbon dioxide sequestration", J. Kor. Energy & Climate Change Soc. (2007) 108.
  4. Y.J. Choi and Y.T. Kim, "Effect of EAF dust on the formation of ultra lightweight aggreates by using bottom ash and dredged soil from coal power plant", J. Kor. Crystal Growth 21[3] (2011) 129. https://doi.org/10.6111/JKCGCT.2011.21.3.129
  5. K.N. Kim, H.S. Jung and H. Park, "Preparation of shotcrete coarse aggregate with low grade clay and coal ash", J. Kor. Crystal Growth 20[3] (2010) 147. https://doi.org/10.6111/JKCGCT.2010.20.3.147
  6. W.S. Kim, T.K. Kang, M.S. Paik, S.S. Kim and S.J. Jung, "The experimental study on carbonation properties of high volume fly-ash concrete", J. Kor. Architectural. 23[1] (2003) 207.
  7. E. Bryant, "Climate process and change", Cambridge, UK (1997) 209.
  8. S.C. Chae, Y.N. Jang and K.W. Ryu, "Mineral carbonation as a sequestration method of $CO_{2}$", J. Kor, Geological Soc. 45[5] (2009) 527.
  9. P. Freund and W.G. Ormerod, "Progress toward storage of carbon dioxide", Energy Convers. Manage 38 (1997) 199. https://doi.org/10.1016/S0196-8904(96)00269-5
  10. W.J.J. Huijgen, R.N.J. Comans and G.J. Witkamp, "Mineral $CO_{2}$ sequestration by steel slag carbonation", Environ. Science and Technology 29 (2005) 9676.
  11. K.N. Kim, D.M. Woo and H. Park, "The sintering characteristics of fly ash-clay system with mine tailing", J. Kor. Crystal Growth 21[6] (2011) 259. https://doi.org/10.6111/JKCGCT.2011.21.6.259

Cited by

  1. Properties of carbonated green construction materials by changes in processing conditions vol.23, pp.3, 2013, https://doi.org/10.6111/JKCGCT.2013.23.3.152
  2. Improvement in mechanical properties by supercritical carbonation of non-cement mortar using fly ash and blast furnace slag vol.15, pp.6, 2014, https://doi.org/10.1007/s12541-014-0461-3
  3. Effect of Calcium Compounds on Mechanical Properties of Eco-Friendly Non-Cement Mortar vol.804, pp.1662-9752, 2015, https://doi.org/10.4028/www.scientific.net/MSF.804.71