DOI QR코드

DOI QR Code

The properties of Al-doped ZnO films deposited with RF magnetron sputtering system in various H2/(Ar + H2) gas ratios

RF 마그네트론 스퍼터링 방법을 사용해 증착된 Al이 도핑 된 ZnO 박막의 H2/(Ar + H2) 가스 비율에 따른 특성

  • Kim, Jwa-Yeon (Department of Materials Engineering, Hoseo University) ;
  • Han, Jung-Su (Regional Innovation Center, Hoseo University)
  • 김좌연 (호서대학교, 신소재공학과) ;
  • 한정수 (호서대학교, 나노소재 및 응용제품 지역혁신센터)
  • Received : 2012.02.21
  • Accepted : 2012.05.29
  • Published : 2012.06.30

Abstract

The properties of Al-doped ZnO (AZO) films were investigated as a function of $H_2/(Ar+H_2)$ gas ratio using an AZO (2 wt% $Al_2O_3$) ceramic target in a radio frequency (RF) magnetron sputtering system. The deposition process was done at $200^{\circ}C$ and in $2{\times}10^{-2}$ Torr working pressure and with various ratios of $H_2/(Ar+H_2)$ gas. During the AZO film deposition process, partial $H_2$ gas affected the AZO film characteristics. The electron resistivity (${\sim}9.21{\times}10^{-4}\;{\Omega}cm$) was lowest and mobility (${\sim}17.8\;cm^2/Vs$) was highest in AZO films when the $H_2/(Ar+H_2)$ gas ratio was 2.5 %. When the $H_2/(Ar+H_2)$ gas ratio was increased above 2.5 %, the electron resistivity increased and mobility decreased with increasing $H_2/(Ar+H_2)$ gas ratio in AZO films. The carrier concentration increased with increasing $H_2/(Ar+H_2)$ gas ratio from 0 % to 7.5 %. This phenomenon was explained by reaction of hydrogen and oxygen and additional formation of oxygen vacancy. The average optical transmission in the visible light wavelength region over 90 % and an orientation of the deposition was [002] orientation for AZO films grown with all $H_2/(Ar+H_2)$ gas ratios.

$Al_2O_3$ 2 wt%가 도핑 된 ZnO(AZO) 타겟으로RF 스퍼터링 장비를 사용하여 $H_2/(Ar+H_2)$ 가스 비율에 따른 AZO 박막을 증착 후, 이들 박막의 특성을 조사하였다. AZO 박막은 $200^{\circ}C$, $2{\times}10^{-2}$ 공정조건에서 $H_2/(Ar+H_2)$ 가스 비율을 변화시키면서 증착하였다. AZO박막증착 중 수소가스의 첨가는 박막의 특성에 영향을 미쳤다. $H_2/(Ar+H_2)$ 가스 비율이 2.5 %일 때 비 저항(${\sim}9.21{\times}10^{-4}\;{\Omega}cm$)과 전자 이동도(${\sim}17.8\;cm^2/Vs$)는 각각 최소값과 최대값을 나타내었다. $H_2/(Ar+H_2)$ 가스 비율이 2.5 % 이상일 때는 $H_2/(Ar+H_2)$ 가스 비율이 증가할수록 비저항은 점차로 증가하였고 전자 이동도는 점차적으로 감소하였다. 전자 운반자 농도는 $H_2/(Ar+H_2)$ 가스 비율이 증가함에 따라 0 %에서 7.5 %까지 점차로 증가하였다. $H_2/(Ar+H_2)$ 가스 비율에 따라 증착된 박막의 가시광선 파장 범위에서 평균 광 투과도는 90 % 이상이었고 성장방향은 [002]이었다.

Keywords

References

  1. Simon L. King, J.G.E. Gardeniers and W. Boyd, "Pulsed-laser deposited ZnO for device applications", Appl. Surf. Sci. 96-98 (1996) 811. https://doi.org/10.1016/0169-4332(96)80027-4
  2. B. Hong and C.-J. Huang, "Structure and properties of Ag embedded aluminum doped ZnO nanocomposite thin films prepared through a sol-gel process", Surface Coat Technology 201 (2006) 3188. https://doi.org/10.1016/j.surfcoat.2006.06.043
  3. P. Kasai, "Electron spin resonance studies of donors and acceptors in ZnO", Phys. Rev. 130 (1963) 989. https://doi.org/10.1103/PhysRev.130.989
  4. C.G. van de Walle, "Hydrogen as a cause of doping in zinc oxide", Phys. Rev. Lett. 85 (2000) 1012. https://doi.org/10.1103/PhysRevLett.85.1012
  5. C.G. van de Walle and J. Neugebauer, "Universal alignment of hydrogen levels in semiconductors, insulators and solutions", Nature (London) 423 (2003) 626. https://doi.org/10.1038/nature01665
  6. K.L. Chopra, S. Major and D.K. Pandya, "Transparent conductors-A status review", Thin Solid Films 102 (1983) 1. https://doi.org/10.1016/0040-6090(83)90256-0
  7. S.A. Studeniki, N. Golego and M. Cocivera, "Carrier mobility and density condtributions to photoconductivity transients in polycrystalline ZnO films", J. Appl. Phys. 87 (2000) 2413. https://doi.org/10.1063/1.372194
  8. X.-T. Hao, J. Ma, D.-H. Zhang, Y.-G. Yang, H.-L Ma, C.-F. Cheng, and X.-D. Liu, "Comparison of the properties for ZnO:Al films deposited on polymide and glass substrates", Mater. Sci. Eng. B 90 (2002) 50-54. https://doi.org/10.1016/S0921-5107(01)00828-5
  9. T. Minami, H. Sato, H. Sonohara, S. Takata, T. Miyata and I. Fukuda, "Preparation of milky transparent conducting ZnO films with textured surface by atmospheric chemical vapor deposition using $Zn(C_{5}H_{7}O_{2})_{2}$", Thin Solid Films 253 (1994) 14. https://doi.org/10.1016/0040-6090(94)90286-0
  10. J. Song, L.-J. Park and K.-H. Yoon, "Electrical and optical properties of ZnO thin films prepared by the pyrosol method", J. Korean Phys. Soc. 29 (1996) 219.
  11. A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto and M. Okuda, "Transparent conducting Al-doped ZnO thin films prepared by pulsed deposition", Jpn. J. Appl. Phys. 35 (1996) L56. https://doi.org/10.1143/JJAP.35.L56
  12. Y.M. Lu, W.S. Hwang, W.Y. Liu and J.S. Yang, "Effect of RF power on optical and electrical properties of ZnO thin film by magnetron sputtering", Mater. Chem. Phys. 72 (2001) 269. https://doi.org/10.1016/S0254-0584(01)00450-3
  13. Sun Yanfeng and Weifeng Liu, "Novek properties of AZO film sputtered in Ar + $H_{2}$ ambient at high temperature", Vacuum 80 (2000) 981.
  14. R. Cebulla, W. Wendt and K. Ellimer, "Al-doped znic oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties", J. Appl. Phys. 83 (1998) 1087. https://doi.org/10.1063/1.366798
  15. M.K. Hudiat, K. Modak and S.B. Krupanidhi, "Si incorporation and Burstein-Moss shift in n-type GaAs", Mater. Sci. Eng. B 60(1) (1999) 1. https://doi.org/10.1016/S0921-5107(99)00016-1