DOI QR코드

DOI QR Code

FEMA P695를 이용한 격간벽 구조의 내진성능평가

Seismic Performance Evaluation of Staggered Wall Structures Using FEMA P695

  • 투고 : 2012.03.12
  • 심사 : 2012.05.29
  • 발행 : 2012.06.30

초록

FEMA P695은 설계지진하중에 대한 구조물의 붕괴 안전성 및 내진성능계수의 적절성을 검토할 수 있는 방법론을 제시하고 있다. 본 연구에서는 FEMA P695에 제시된 방법에 따라 6층, 12층 중복도 격간벽 구조시스템의 내진성능을 파악하였다. 구조설계기준에 따라 설계된 기본 모델의 해석결과와 중복도 상부 인방보의 춤이나 철근량을 증가시킨 모델의 해석결과를 비교하여 보강 효과를 파악하였다. 두 예제 구조물의 증분 동적해석 결과를 바탕으로 계산된 수정 붕괴 여유비 (ACMR)는 제시된 $ACMR_{20%}$ 한계상태를 만족하여 설계지진하중에 대하여 충분한 내진성능을 보유하고 있는 것으로 나타났다. 인방보의 춤을 증가시킨 모델에 비해 주철근을 증가시킨 모델의 ACMR 증가량이 더 현저하여 보다 효율적인 내진성능 보강방안으로 나타났다.

The FEMA P695 document proposed a methodology to evaluate the collapse safety of a structure and the validity of the seismic design coefficients. In this study, the seismic performance of six- and twelve-story staggered wall structures with a middle corridor was evaluated based on the FEMA P695 procedure. The analysis results of the prototype structures were compared with those of the structures with an increased coupling beam depth or an increased re-bar ratio of the coupling beams in order to investigate the effect of retrofit. The adjusted collapse margin ratios (ACMR) of the model structures obtained from incremental dynamic analyses turned out to be larger than the specified limit states of an ACMR of 20%, which implies that the analysis model structures have enough strength against design level earthquakes. It was also observed that the increase in the re-bar ratio of the coupling beams between the staggered walls was more effective in increasing the ACMR than an increase in the depth of the coupling beams.

키워드

참고문헌

  1. 건설교통부, 공동죽택 바닥충격음 차단구조인정 및 관리기준, 2005.
  2. 건설교통부, 주택성능등급표시제, 2006.
  3. 이준호, 전용, 김진구, "판상형 격간벽시스템의 반응수정계수," 대한건축학회논문집, 제27권, 제7호, 77-85, 2011.
  4. 강현구, 이준호, 김진구, "중복도 격간벽 구조시스템의 내진성능평가," 대한건축학회논문집, 제27권, 제9호, 77-84, 2011.
  5. KBC-2009, 건축구조설계기준, 대한건축학회, 2009.
  6. AISC, "Steel Design Guide 14 : Staggered Truss Framing System," American Institute of Steel Construction, Chicago, 2002.
  7. FEMA P695, Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington, D. C., 2009.
  8. ASCE, Seismic Rehabilitation of Existing Buildings, ASCE Standard ASCE/SEI 41-06, American Society of Civil Engineers, Reston Virginia., 2007.
  9. ATC, Structural response modification factors, ATC-19, Applied Technology Council, Redwood City, California, 5-32, 1995.
  10. ATC, A critical review of curent approaches to earthquakeresistant design, ATC-34, Applied Technology Council, Redwood City, California, 31-6, 1995.
  11. PEER, PEER NGA Database, Pacific Earthquake Engineering Research Center, University of California, Berkeley, U.S.A., http://peer.berkeley.edu/nga/., 2006.
  12. Vamvatsikos, D., and Cornell, C.A., "Incremental Dynamic Analysis," Earthquake Engineering and Structural Dynamics, Vol. 31, Issue 3, pp. 491-514., 2002. https://doi.org/10.1002/eqe.141
  13. Computer and Structures, Inc., PERFORM Components and Elements for PERFORM 3D and PERFORM-Collapse ver.4, CSI, Berkerley, CA., 2006.
  14. Paulay and Priestley, "Seismic Design of Reinforced Concrete and Masonry Building," John Wiley & Sons, Inc., 1992.
  15. Paulay and Priestley, "Seismic Design of Reinforced Concrete and Masonry Building," John Wiley & Sons, Inc., 1992.
  16. Ellingwood, B. R., Celik, O. C., and Kinali, K., "Fragility assessment of building structural systems in Mid-America." Earthquake Eng. Struct. Dyn., Vol.36, No.13, 1935-1952., 2007. https://doi.org/10.1002/eqe.693

피인용 문헌

  1. Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard vol.20, pp.7 Special, 2016, https://doi.org/10.5000/EESK.2016.20.7.485