DOI QR코드

DOI QR Code

Photolysis Improvement of Toluene in 50%TiO2/6%WO3 Sol Solutions Sensitized by Acetone

50%TiO2/6%WO3 졸 용액에서의 톨루엔 처리에 대한 아세톤의 광활성 증가효과

  • Received : 2012.02.03
  • Accepted : 2012.06.15
  • Published : 2012.06.29

Abstract

Objectives: The photocatalytic degradation of toluene in a batch mode photoreactor for the purpose of the hazardous waste treatment was investigated. Methods: Kinetic experiments using a low pressure mercury lamp (Lambda Scientific Pty Ltd, 50 Watt) emitting both UV and visible light were performed at $31^{\circ}C$ over toluene concentrations ranging from 10 to 50 mg/l in water with $50%TiO_2/6%WO_3$ (TW) concentration of 1 g/l at a pH of 6. Results: Kinetic studies showed that $50%TiO_2/6%WO_3$ (TW) photocatalyst was highly active in toluene degradation; we observed that 99% of the pollutant was degraded after six hours under visible irradiation; furthermore, we observed that adsorption onto TW catalyst was responsible for the decrease of toluene with pseudo-first order kinetics. It was also found that oxygen as a radical source in the sol medium played a significant role in affecting the photodegradation of toluene, especially with a two-fold elevation. This increase was achieved by a more than four-fold elevation of the photodegradation of toluene in the presence of acetone than without, presumably via an energy transfer mechanism. Conclusions: We concluded that photodegradation in acetone and oxygen molecules along with TW was an effective method for the removal of toluene from wastewater.

Keywords

References

  1. Lee SM, Lee TW, Choi BJ, Yang JK. Treatment of Cr(VI) and phenol by illuminated $TiO_2$. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2003; 38(10): 2219-2228. https://doi.org/10.1081/ESE-120023356
  2. Hsien YH, Chang CF, Chen YH, Cheng S. Photodegradation of aromatic pollutants in water over $TiO_2$ supported on molecular sieves. Appl Catalysis B: Environ. 2001; 31: 241-249. https://doi.org/10.1016/S0926-3373(00)00283-6
  3. Song SJ, Kim KS, Kim KH, Li HJ, Cho DL, Kim JB, et al. Fabrication of $TiO_2$ impregnated stainless steel fiber photocatalyts and evaluation of photocatalytic activity. J Korean Ind Eng Chem. 2008; 19(6): 674-679.
  4. Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V. Solar light induced and $TiO2$ assisted degradation of textile dye reactive blue 4. Chemosphere. 2002; 46: 1173-1181. https://doi.org/10.1016/S0045-6535(01)00284-3
  5. Chen Y, Wang K, Lou L. Photodegradation of dye pollutants on silica gel supported $TiO2$ particles under visible light irradiation. J Photochem Photobiol A: Chem. 2004; 163(1-2): 281-287. https://doi.org/10.1016/j.jphotochem.2003.12.012
  6. Yang JK, Lee, SM. Removal of Cr(VI) and humic acid by using $TiO2$ photocatalysis. Chemosphere 2006; 63(10): 1677-1684. https://doi.org/10.1016/j.chemosphere.2005.10.005
  7. Ke D, Liu H, Peng, T, Liu X, Dai K. Preparation and photocatalytic activity of $WO_3/TiO_2$ nanocomposite particles. Mater Lett. 2008; 62(3): 447-450. https://doi.org/10.1016/j.matlet.2007.05.060
  8. Li XZ, Li FB, Yang CL, Ge WK. Photocatalytic activity of $WO_x-TiO_2$ under visible light irradiation. J Photochem Photobiol A: Chem. 2001; 141(2): 209-217. https://doi.org/10.1016/S1010-6030(01)00446-4
  9. Zhao J, Chen C, Ma W. Photocatalytic degradation of organic pollutants under visible light irradiation. Topics in Catalysis. 2005; 35(3-4): 269-278. https://doi.org/10.1007/s11244-005-3834-0
  10. Song H, Jiang H, Liu X, Meng G. Efficient degradation of organic pollutant with WOx modified nano $TiO2$ under visible irradiation. J Photochem Photobiol A: Chem. 2006; 181(2-3): 421-428. https://doi.org/10.1016/j.jphotochem.2006.01.001
  11. Lin CF, Wu CH, Onn ZN. Degradation of 4-chlorophenol in $TiO_2,\;WO_3,\;SnO_2,\;TiO_2/WO_3\;and\;TiO_2/SnO_2$ systems. J Hazard Mater. 2008; 154(1-3): 1033-1039. https://doi.org/10.1016/j.jhazmat.2007.11.010
  12. Hashimoto K, Irie H, Fujishima A. $TiO2$ Photocatalysis: A historical overview and future prospects. Jpn J Appl Phys. 2005; 44(12): 8269-8285. https://doi.org/10.1143/JJAP.44.8269
  13. Legrini O, Oliveros E, Braun AM. Photochemical processes for water treatment. Chem Rev. 1993; 93(2): 671-698. https://doi.org/10.1021/cr00018a003
  14. Habazaki H, Hayashi Y, Konno H. Characterization of electrodeposited $WO_3$ films and its application to electrochemical wastewater treatment. Electrochim Acta. 2002; 47(26): 4181-4188. https://doi.org/10.1016/S0013-4686(02)00435-8
  15. Papp J, Soled S, Dwight K, Wold A. Surface acidity and photocatalytic activity of $TiO_2,\;WO_3/TiO_2,\;and\;MoO_3/TiO_2$ photocatalysts. Chem Mater. 1994; 6(4): 496-500. https://doi.org/10.1021/cm00040a026
  16. Kwon YT, Song KY, Lee WI, Chio GJ, Do YR. Photocatalytic behavior of $WO_3-loaded\;TiO_2$ in an oxidation reaction. J Catal. 2000; 191(1): 192-199. https://doi.org/10.1006/jcat.1999.2776
  17. Gomez H, Orellana F, Lizama H, Mansilla HD, Dachiele EA. Study of phenol photodegradation with $TiO_2/-WO_3$ coupled semiconductors activated by visible light. J Chil Chem Soc. 2006; 51(4): 1006-1009.
  18. Tryba B, Piszcz M, Morawski AW. Photocatalytic activity of $TiO_2-WO_3$ composites. Int J Photoenergy. 2009; Article ID 297319, 7 pages.
  19. He J, Cai QZ, Luo Q, Zhang DQ, Tang TT, Jiang YF. Photocatalytic removal of methyl orange in an aqueous solution by a $WO_3/TiO_2$ composite film. Kor J Chem Eng. 2010; 27(2): 435-438. https://doi.org/10.1007/s11814-010-0080-3
  20. Cao L, Yuan J, Chen M, Shangguan W. Photocatalytic energy storage ability of $TiO_2-WO_3$ composite prepared by wet-chemical technique. J Environ Sci(China). 2010; 22(3): 454-459. https://doi.org/10.1016/S1001-0742(09)60129-7
  21. Su D, Wang J, Tang Y, Liu C, Liu L, Han X. Constructing $WO_3/TiO_2$ composite structure towards sufficient use of solar energy. Chem Commun. 2011; 47(14): 4231-4233. https://doi.org/10.1039/c0cc04770h
  22. Robinson AJ, Rodgers MAJ, Keene JP, Gilbert CW. Singlet energy transfer in liquid acetone. J Photochem. 1972-1973; 1(5): 379-386.
  23. Qian K, Shukla A, Futrell J. Collision-induced intramolecular energy transfer and dissociation of acetone molecular ion. J Chem Phys. 1990; 92(10): 5988-5996. https://doi.org/10.1063/1.458369
  24. Chu W, Tsui SM. Photo-sensitization of diazo disperse dye in aqueous acetone. Chemosphere. 1999 Oct; 39(10): 1667-1677. https://doi.org/10.1016/S0045-6535(99)00067-3
  25. Choy WK, Chu W. The rate improvement and modeling trichloroethene photodegradation by acetone sensitizer in surfactant solution. Chemosphere. 2001; 44(5): 943-947. https://doi.org/10.1016/S0045-6535(00)00555-5
  26. Vinodgopal K, Hotchandani S, Kamat PV. Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J Phys Chem. 1993; 97(35): 9040-9044. https://doi.org/10.1021/j100137a033
  27. Hirahara Y, Ueno H, Nakamuro K. Aqueous photodegradation of fenthion by ultraviolet B irradiation: contribution of singlet oxygen in photodegradation and photochemical hydrolysis. Water Res. 2003; 37(2): 468-476. https://doi.org/10.1016/S0043-1354(02)00272-5
  28. Habibi MH, Hassanzadeh A, Mahadavi S. The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aquous $TiO2$ suspensions. J Photochem Photobiol A: Chem. 2005; 172(1): 89-96. https://doi.org/10.1016/j.jphotochem.2004.11.009
  29. Xu S, Shen J, Chen S, Zhang M, Shen T. Active oxygen species $(^{1}O_2,\;O_2)$ generation in the system of $TiO2$ colloid sensitized by hypocrellin B. J Photochem Photobiol A: Biol. 2002; 67(1): 64-70. https://doi.org/10.1016/S1011-1344(02)00263-4
  30. Wu XZ, Lingyue M, Akiyama K. Chemiluminescence study of active oxygen species produced by $TiO2$ photocatalytic reaction. Luminescence. 2005; 20(1): 36-40. https://doi.org/10.1002/bio.800
  31. Tsuruta T, Okuda M, Katayama K. Detection of active oxygen species dynamics in $TiO2$ sol solutions using single-shot near-field heterodyne transient grating method. Chem Phys Lett. 2008; 456(1-3): 47-50. https://doi.org/10.1016/j.cplett.2008.03.020
  32. Zheng W, Liu WP, Wen YZ, Lee SJ. Photochemistry of insecticide imidacloprid: direct and sensitized photolysis in aqueous medium. J Env Sci(China). 2005; 16(4): 539-542.
  33. Chen F, Wu TH, Zhou XP. The photodegradation of acetone over $VOx/MgF_2$ catalysts. Catal Commun. 2008; 9(8): 1698-1703. https://doi.org/10.1016/j.catcom.2008.01.034
  34. Carcel RA, Andronic L, Duta A. Photocatalytic degradation of methylorange using $TiO_2,\;WO_3$ and mixed thin films under controlled pH and $H_2O_2$. J Nanosci Nanotechnol. 2011; 11(10): 9095-9101. https://doi.org/10.1166/jnn.2011.4283
  35. Thakur RS. Chaudhary R, Singh C. Fundamentals and applications of the photocatalytic treatment for the removal of industrial organic pollutants and effects of operational parameters: A review. J Renew Sustain Energy Rev. 2010; 2(4): 042701 (37 pages). https://doi.org/10.1063/1.3467511