DOI QR코드

DOI QR Code

분무열분해법으로 YAG:Ce 제조시 용액 조건이 발광특성에 미치는 영향

Effect of Solution Properties on Luminance Characteristics of YAG:Ce Phosphors Prepared by Spray Pyrolysis

  • Lee, You-Mi (Department of Chemical Engineering, Kongju National University) ;
  • Kang, Tae-Won (Department of Chemical Engineering, Kongju National University) ;
  • Jung, Kyeong-Youl (Department of Chemical Engineering, Kongju National University)
  • 투고 : 2012.04.19
  • 심사 : 2012.05.24
  • 발행 : 2012.06.28

초록

YAG:Ce yellow phosphor particles were synthesized by spray pyrolysis with changing the solution properties and their luminous properties, crystal structure, and morphological changes were studied by using PL measurement, XRD, and SEM analysis. It was clear that the solution properties significantly affected the crystal phase, crystallite size, the PL intensity, and the morphology of YAG:Ce particles. At low calcination temperature, the addition of urea only to the spray solution was helpful to form a pure YAG phase without any impurity phases, as the result, the highest luminescence intensity was achieved at the calcination temperature of $900^{\circ}C$. When the calcination temperatures were larger than $1300^{\circ}C$, however, the YAG particles prepared without any additive showed the highest luminescent intensity. Regardless of the solution conditions, the emission intensity of YAG:Ce particles prepared by spray pyrolysis showed a linear relation with the crystallite size. In terms of the morphology of YAG:Ce particles, the addition of both DCCA and $NH_4OH$ to the spray solution was effective to prepare a spherical and dense structured YAG particles.

키워드

참고문헌

  1. S. Nakamura, T. Mukai and M. Senoh: Appl. Phys. Lett., 64 (1994) 1687. https://doi.org/10.1063/1.111832
  2. P. Schlotter, J. Baur, C. H. Hielscher, M. Kunzer, H. Obloh, R. Schmidt and J. Schneider: Mater. Sci. Eng. B, 59 (1999) 390. https://doi.org/10.1016/S0921-5107(98)00352-3
  3. J. Baur, P. Schlotter and J. Schneider: Adv. Solid State Phys., 37 (1998) 67. https://doi.org/10.1007/BFb0108239
  4. P. Schlotter, R. Schmidt and J. Schneider: Appl. Phys. A, 64 (1997) 417. https://doi.org/10.1007/s003390050498
  5. M-S. Tsai, W.-C. Fu, W.-C. Wu, C.-H. Chen and C.-H. Yang: J. Alloys Compd., 455 (2008) 461. https://doi.org/10.1016/j.jallcom.2007.01.148
  6. C.-H. Lu and R. Jagannathan: Appl. Phys. Lett., 80 (2002) 3608. https://doi.org/10.1063/1.1475772
  7. Z. Wu, X. Zhang, W. He, Y. Du, N. Jia, P. Liu and F. Bu: J. Alloys Compd., 427 (2009) 576.
  8. H. M. H. Fadlalla and C. C. Tang: Mater. Chem. Phys., 114 (2009) 99. https://doi.org/10.1016/j.matchemphys.2008.08.049
  9. A. Purwanto, W.-N. Wang, T. Ogi, I. W. Lenggoro, E. Tanabe and K. Okuyama: J. Alloys Compd., 463 (2008) p350. https://doi.org/10.1016/j.jallcom.2007.09.023
  10. Y.-P. Fu, S.-B. Wen and C.-S. Hsu: J. Alloys Compd., 458 (2008) 318. https://doi.org/10.1016/j.jallcom.2007.03.147
  11. J. M. Yang, S. M. Jeng and S. Chang: J. Am. Ceram. Soc., 79 (1996) 1218. https://doi.org/10.1111/j.1151-2916.1996.tb08575.x
  12. Y. C. Kang, I. W. Lenggoro, S. B. Park and K. Okuyama: Mater. Res. Bull., 35 (2000) 789. https://doi.org/10.1016/S0025-5408(00)00257-9
  13. K. M. Kinsman and J. Mckittrick: J. Am. Ceram. Soc., 77 (1994) 2866. https://doi.org/10.1111/j.1151-2916.1994.tb04516.x
  14. S. H. Lee, H. Y. Koo, S. M. Lee and Y. C. Kang: Ceram. Int., 36 (2010) 611. https://doi.org/10.1016/j.ceramint.2009.09.041
  15. S. H. Lee, D. S. Jung, J. M. Han, H. Y. Koo and Y. C. Kang: J. Alloys Comp., 447 (2009) 776.
  16. M. C. Maniquiz, K. Y. Jung and S. M. Jeong: J. Electrochem. Soc., 157 (2010) H1135. https://doi.org/10.1149/1.3503569
  17. K. Y. Jung and J. H. Seo: Electrochem. Solid-State Lett., 11 (2008) J64. https://doi.org/10.1149/1.2917584