
http://dx.doi.org/10.5573/JSTS.2012.12.2.240 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.2, JUNE, 2012

Debug Port Protection Mechanism for Secure
Embedded Devices

Keun-Young Park, Sang-Guun Yoo, and Juho Kim

Abstract—In this paper we propose a protection

mechanism for the debug port. While debug ports are

useful tools for embedded device development and

maintenance, they can also become potential attack

tools for device hacking in case their usage is

permitted to hackers with malicious intentions. The

proposed approach prevents illicit use of debug ports

by controlling access through user authentication,

where the device generates and issues authentication

token only to the server-authenticated users. An

authentication token includes user access information

which represents the user’s permitted level of access

and the maximum number of authentications allowed

using the token. The device authenticates the user

with the token and grants limited access based on the

user’s access level. The proposed approach improves

the degree of overall security by removing the need to

expose the device’s secret key. Availability is also

enhanced by not requiring server connection after the

initial token generation and further by supporting

flexible token transfer among predefined device

groups. Low implementation cost is another benefit of

the proposed approach, enabling it to be adopted to a

wide range of environments in demand of debug port

protection.

Index Terms—Debug port, device hacking, authentication

token

I. INTRODUCTION

Enhanced performance and features of modern

embedded devices have brought on a variety of services

utilizing those resources for business, which at the same

time have invited device hackings aimed at feature

modification, illegal use of paid services, or leaking

sensitive information. Fast-evolving device hacking

techniques necessitate device manufacturers to design a

hack-proof, safe, and reliable execution environment

built up from the hardware platform level with security in

mind from early on [1].

Device hacking through debug ports or service ports is

a well-recognized security threat which must be

addressed in the device platform design. Most embedded

devices have debug ports for utility purposes such as

testing, programming or maintenance, and those ports

can be used for obtaining low-level device-internal

information which can give device hackers considerable

edge unless securely controlled [2, 3]. For instance, an

attacker using a debugging tool compliant with IEEE

1149.1 standard test access port can easily access the

processor or the memory-internal information of a device

equipped with the port [4, 5]. With access to low-level

internal information, the attacker can opt to mount an

attack much more penetrative than a purely software-

based attack. In case a software is executing computations

to verify a user or a license copy, the attacker can

analyze the key values used in the computations from

information collected from the registers or the memory

[6, 7]. In other cases, the attacker can download and

modify a device’s firmware to prevent or bypass the

execution of a security routine, or analyze security

vulnerability and develop a malware to exploit it [2].

Manuscript received Jul. 11, 2011; revised Jan 14, 2012
Dept. of Computer Science & Engineering, Sogang University, Korea
E-mail : jhkim@sogang.ac.kr (Corresponding Author)

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.2, JUNE, 2012 241

Therefore, to ensure protection against device hacking,

debug port access must be controlled.

In this paper, we propose a protection mechanism

which provides user authentication and access control

capabilities for the purpose of preventing unauthorized

access by hackers at the cost of minimal availability

degradation. After the introduction in Section I, we

provide an overview of existing debug port protection

mechanisms and their limitations in Section II. In Section

III and IV, we elaborate the details of the proposed approach,

including its procedures, policies, and architecture.

Section V analyzes the security of the proposed approach,

while Section VI provides a comparison of the proposed

approach against related works. In Section VII we

illustrate the implementation results, and lastly in Section

VIII, we conclude the paper with a summary.

II. RELATED WORKS

Security and availability are typically found to be in a

trade-off relationship, where previous works on debug

port security mechanisms have failed to find a

satisfactory common ground and suggested emphasis on

only one of the traits while deemphasizing the other.

Given the purpose of debug port protection is to

prevent hackers from gaining access to unauthorized

information, blowing fuses to physically remove debug

ports from devices on which further debugging is

deemed unnecessary can achieve that security goal [8].

However, considering the fact that debug ports serve as a

useful maintenance tool, its constant availability must be

ensured on most devices. That is, authorized users must

be able to use a debug port whenever necessary.

User authentication needs to be applied to debug ports

to prevent illegal exploitation by attackers while ensuring

accessibility for normal users. Previous works have

proposed two separate approaches to user authentication,

which are two-entity authentication and three-entity

authentication. The two-entity authentication uses a

shared secret key between the device and the user [9, 10].

A user with the key can authenticate oneself regardless of

time or place, minimizing the loss of availability while

maintaining a certain level of security. However, the key

is exposed to the external world while being directly

delivered to and managed by the user, limiting the

security level achievable by the approach. The three-

entity authentication, on the other hand, utilizes a

separate server to authenticate a user for improved

security [11]. In this approach, the server authenticates

the user and delivers the authentication result along with

the user’s authorization information to the device through

a asymmetric key encryption channel established between

the server and the device. This approach offers higher

level of security by hiding the key from the user, and

supports various security policies for user authentication

and authorization on the server. However, the need for

the server to authenticate the user on every debug port

use requires continuous communication with the server,

disabling debug port use and lowering overall availability

when network is unavailable.

Complementing the previous approaches’ shortcomings

while combining their strengths, [12] has proposed a user

authentication method in which the server issues to the

authenticated user a credential with which to authenticate

oneself to a particular device. The device verifies user-

submitted credentials and opens the debug port to only

the users with valid credentials. In contrast to the other

two authentication schemes, the approach taken by [12]

effectively eliminates the concern of key management

and removes the need for networking with the server

after a credential has been issued. However the approach

still faces several limitations regarding security and

availability. First, the user must issue from the server

separate credentials for each device to be tested, and the

user can’t use the debug port of a device if the particular

device is located in an area without available networking

because no credential can be issued. Secondly, the

approach does not provide any built-in mechanism to

restrict the use of a credential already issued by a server.

Additional security mechanism for tracking the

accumulative usage count of each credential is necessary

to provide such function. Without additional control

measures to revoke a previously-issued credential, the

user has unlimited usage of the credential. Lastly, the

user cannot change the password of an issued credential.

If a credential’s password is leaked while in use, the

credential has to be discarded and re-issued from the

server. This places a severe restriction on credential

usage in an environment where multiple users test a

single device. For instance, if a credential has to be

shared even briefly with another user, the credential

owner must discard and re-issue the credential since its

242 KEUN-YOUNG PARK et al : DEBUG PORT PROTECTION MECHANISM FOR SECURE EMBEDDED DEVICES

password has been exposed.

In this paper, we propose a debug port protection

mechanism which resolves the limitations of previous

works and provides improved security and availability.

III. PROPOSED APPROACH

In this paper, we propose a new debug port protection

mechanism with improved security and availability. The

proposed approach effectively prevents device hacking

attempts on the debug port by using authentication

tokens to authenticate users and by controlling access to

the port. In this Chapter we explain the details of the

proposed approach’s user authentication and access

control procedures.

1. User Authentication Scheme using Authentication

Token

The proposed approach establishes a debug port

protection mechanism between the device, the server and

the host, as shown in Fig. 1, where the role of the host is

to relay the communication between the device and the

server while providing user interface for the user. In our

approach, the device authenticates the debug port user

using the authentication token and secret for the token

submitted by the user and determines the user’s access

level based on the access level authorized for the user’s

token. The server authenticates the user and authorizes

the user with appropriate access level, which enables the

device to issue a corresponding authentication token for

the user. The token includes access level information of

the owner and the maximum number of authentications

allowed (MNAA) using the token. Therefore a user who

wishes to use the debug port of a device must first have

the device issue an authentication token for the user.

Once a token has been issued, no further communication

with the server is necessary while there are remaining

authentications allowed by the token.

The authentication token generation procedure is a

challenge-response interaction between the device, the

host and the server, which proceeds in the following

steps: First, the user inputs the necessary user account

information and secret to be used for token generation at

the device. Then the host sends an authentication requests

to the device and obtains a device-generated challenge.

Thereafter the host establishes a secure communication

channel with the server and requests for user authentication

and authorization by sending to the server the user’s

account information and secret, the device’s serial

number, and the device-generated challenge. The server,

upon receiving the necessary information, authenticates

the user and checks the user’s device access level. A

response confirming that the user has been authenticated

is generated by the server, which includes the user’s

access level information, the secret, and the MNAA

value of the token to be generated at the device. The

server response is delivered to the device, in which the

authentication module verifies the response in order to

check if the user has been properly authenticated by the

server. If so, the module generates a token corresponding

to the user’s access level and MNAA. Afterwards, the

token generation information (TI) is stored within the

non-volatile storage of the device for the purpose of

future token verification, and the token itself is delivered

to the host, completing the authentication token issue

procedure.

The user authentication procedure is the sequence of

steps to authenticate a token-holder in order to permit

access to the debug port under correct restrictions

Fig. 1. User Authentication Scheme.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.2, JUNE, 2012 243

imposed by the user’s access level and MNAA value.

The procedure is carried out on a one-on-one connection

between the device and the host, during which the device

verifies the user-provided token and secret to

authenticate the user and to control the user’s access to

the debug port. The first step of the procedure is initiated

by the user requesting the host for authentication. The

next step is followed by the host sending the user-

provided token and its secret to the device. The device,

upon receiving the user’s token and secret, verifies them

with the corresponding TI previously stored within its

non-volatile storage in order to check that the token is

valid and that the user is indeed the correct owner of the

token. If the authentication is successful, the device

subtracts 1 from the token’s MNAA value to obtain

MNAA’ and reflects this changed value to the existing

token by re-generating the token with MNAA’ and

storing the resulting TI at the TI storage. After the re-

generated token is sent back to the host, the device grants

access to the user based on the user’s access level.

2. Discarding Expired Authentication Token

A token becomes expired during user authentication

when its MNAA value reaches zero after subtraction, or

when a replacement token is generated at the device

using the subtracted MNAA value (MNAA’). An expired

token must be discarded to prevent further use. When a

replacement token is generated during user authentication,

the token’s corresponding TI is also updated with the

new MNAA’. If a token with MNAA value of 1 has used

up its final authentication, TI for the token is deleted from

the non-volatile storage to disable further use of the token

before access to the debug port is granted. Even valid

tokens can be discarded at the discrimination of the user

or the device. For instance, the user can request for the

device to discard an authentication token if it serves no

more purpose for the user or if the secret for the token has

been leaked. Further, the device can initiate a token discard

if the number of consecutive authentication failures using

a token reaches a certain threshold, which thereafter will

be perceived by the device as a brute force attack.

3. Group Token Issue & Token Transfer Scheme

The proposed approach can, depending on the

manufacturer’s security policy or key allocation method,

support the use of device group authentication tokens

which permit authentication of multiple devices belonging

to a certain group of devices. A device manufacturer can,

for instance, assign an identical key to a selected device

group defined by such criteria as device model name,

hardware version, or feature sets. This practice of device

group key management can help to reduce chip fabrication

costs or to increase operation efficiency. When device

group authentication token is in use, a user can transfer

his authentication token issued by a device to another

device to authentication himself given that both the

source device and the destination device belongs to the

same device group and the MNAA value of the transferred

token is greater than zero.

The user wishing to make a token transfer must first be

authorized to own a group authentication token and have

an authentication token issued from a device which

belongs to the same group as the destination device. The

authentication token issue procedure is shared between

group and non-group tokens, with the only difference in

that the server permits group authentication token

ownership only to authorized users, while the device

generates group authentication tokens only for users with

confirmed ownership.

The user owning a group authentication token can

transfer the token to other devices within the same device

group if desired. The authentication token transfer

procedure, as shown in Fig. 2, employs a challenge-

response interaction between the source device, the host,

and the destination device. The authentication token transfer

procedure is performed similarly as the authentication

token issue procedure, particularly at the destination

device which displays identical behavior.

When the user provides to the host the authentication

token, the secret for the token, and the new secret to

replace the existing secret at the destination device, the

host relays the token transfer request in a similar manner

as in token issue request, and receives a challenge from

the destination device. Then the host delivers the

challenge along with the three-piece information provided

by the user to the source device, which in turn verifies

the token using the secret to authenticate the user and

checks if the user-provided token is indeed a group

authentication token. Then the source device generates a

response to the destination device’s challenge in an

244 KEUN-YOUNG PARK et al : DEBUG PORT PROTECTION MECHANISM FOR SECURE EMBEDDED DEVICES

identical manner as the server generates a response to a

device’s challenge in the authentication token issue

procedure. The MNAA value and access level information

of the existing token is preserved in the transferred token,

but the secret is replaced by the new secret provided by

the user. TI corresponding to the existing token, stored in

the source device’s non-volatile storage, is deleted in

order to discard the token and prevent its further use.

Lastly, the response generated by the source device is

delivered, and is verified at the destination device which

thereafter issues an authentication token for the host then

stores the TI in its non-volatile storage.

4. Access Control

As devices differ in security level requirements

depending on their type or features, debug mechanisms

must also vary accordingly in their test functionalities

depending on the type of users or the lifecycle of their

target devices. For example, device developers involved

in earlier development stages such as chip circuitry tests

or board-level interconnection tests require different sets

of test functionalities from the maintenance engineers

working with devices in the field. The proposed approach

in this paper provides a fine-grained access control

mechanism which reflects the variability of security

requirements.

The proposed approach classifies devices based on

their security sensitivity into multiple security categories.

A smartphone, for example, is differentiated from a

generic portable media player because it stores secret

keys for firmware or software authentication. Devices

can employ different levels of protection based on the

user’s level of clearance granted by the server, managing

each user’s device access using the access level

information found within the user’s authentication token.

The access level can be an hierarchical security level

classified by the security sensitivity of the device

resource made available through the debug port, or a

non-hierarchical security level classified by feature sets

necessitated by different user roles on a need-to-know

basis.

This paper’s approach proposes an access level

assignment scheme based on roles, in which accessible

device categories and access levels on those devices are

managed according to the role performed by the

individual user. For instance, the smartphone board-level

interconnection tester role will have access to identical

device categories but different access levels from the

firmware developer role. If a role requires sequential

access to multiple devices, group token ownership can be

authorized for the role.

During the authentication token issue procedure, the

server authenticates a user and grants the appropriate

access level according to the user’s role. The target

device’s serial number is used to check if the user is

requesting access to a device belonging to the device

category permitted for the user’s role. A user can have

authentication tokens with varying access levels

depending on the user’s current role.

5. Architecture

The architecture of the proposed approach is as shown

in Fig. 3. The device communicates with the host locally

through the debug tool and uses the network when

communicating with the server. Besides the debug tool,

the host runs separate authentication software for

processing protocols. The authentication software

provides the user interface, controls the overall execution

of protocols, relays communications between the device

and the server, and manages the device’s protocol

executions by using the debug tool software to read from

or write to the device the protocol instructions or the

authentication information.

In this paper’s design, the device includes an

authentication module and an access controller, both

implemented in hardware to prevent modification. These

components are structurally independent from the

Fig. 2. Authentication Token Transfer Procedure.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.2, JUNE, 2012 245

device’s processor or its bus to eliminate the possibility

of influence from any software-based attacks or

malfunctions, and only accept control from the host

through the debug port.

The authentication module is a functional block which

receives the host’s instructions through the debug port

and executes certain steps of the protocols defined herein.

The module also generates and verifies challenges,

responses, and authentication tokens. In case a possible

brute-force attack is detected (such as when the number

of consecutive authentication failures by a user exceeds a

predefined threshold value), the authentication module

deletes the token’s corresponding TI to disable its further

use. TI is stored in a non-volatile storage by the

authentication module. Memory space requirement for TI

storage is practically insignificant as a token’s TI has

very small memory footprint, and typically only a small

number of tokens is expected to be in use at any single

time. Assigning a dedicated storage for TI is

recommended for enhanced security. However, in case a

larger memory has to be provided for TI storage to

facilitate a large number of users, or if dedicated storage

is too costly to implement, then TI storage can be

assigned to a portion of an existing on-chip non-volatile

storage on the device. In this case, hardware-based

access control for the TI storage portion to restrict

read/write operations other than by the authentication

module is mandatory. In [13, 14] a secure bus architecture

example is provided to illustrate the implementation of a

hardware-based control.

The access controller determines the user’s access

level based on the authentication result. In the initial state

where the user is not yet authenticated, the access

controller controls the debug controller’s actions to

restrict all test functions except the serial number transfer

function. After the user successfully completes

authentication, the authentication module delivers the

user’s access level information to the access controller

and the debug controller is controlled to allow tests

permitted by the user’s given access level. An example

of access controller implementation to fine-control scan

chain operations based on access levels is provided in

[15].

IV. SECURITY PROTOCOL

In this Chapter we define the security protocols for

supporting the execution of authentication token issue

procedure, user authentication procedure, and

authentication token transfer procedure as defined by the

proposed approach. Notations used in this Chapter are

summarized in Table 1.

1. Assumptions

All proposed protocols in this paper use symmetric

encryption to ensure security, which requires the device

and the server to share a secret key K. All devices are

Table 1. Notation

Notation Description

UN User name for user authentication by the server

PW User password a paired with UN

SN Unique identification number of a device

T Authentication token

TI Token generation information of T

TS Secret of T provided by a user

TN Unique identification number of T

AL Device access level assigned to a user

G Group token ownership of a user

MNAA Maximum number of authentications allowed using T

CD Challenge generated by a device

RS Response by the server in response to CD

RD Response by a device in response to CD

NC Random number generated by a device for CD

NT Random number generated by a device for T

K Secret key shared between a device and the server

Ex(y) Symmetric key encryption (x: key, y: text)

Dx(y) Symmetric key decryption (x: key, y: text)

|| String concatenation

Server

Host User

Nonvolatile
Storage

Authenticator

Token
GeneratorRNGEncryption/

Decryption

Key

Port
Access

Controller
Debug

Controller

Processor

Brute-force
Detector

Authentication Module

Network

Access Level

Fig. 3. Architecture of the Proposed Approach.

246 KEUN-YOUNG PARK et al : DEBUG PORT PROTECTION MECHANISM FOR SECURE EMBEDDED DEVICES

assigned a unique serial number SN for device

identification, where serial number assignment schematics

may vary depending on the security policy in effect or

for the purpose of management efficiency. If an identical

key is assigned to a particular device group, a ‘group’

field can be employed as part of the serial number

schematics. The server is assumed to store the SN and K

pair for all devices, along with their corresponding user

account information, in its database.

1 1

1 1

: (: ,..., :)
 =

: (: ,..., :)
n n

n n

Device list SN K SN K
Database

User list UN PW UN PW

Each authentication token T includes the following

information: the maximum number of authentications

allowed using the token (MNAA), the user’s access level

on the debug port (AL), group token ownership of the

user (G), and the unique token serial number (TN). An

issued token T is classified using its corresponding

device’s serial number SN and is stored at the token

storage.

 1 1 : (: ,..., :)n nToken Storage T list SN T SN T

The authentication module of the device issues T and

stores the resulting token generation information TI

within the non-volatile storage of the device after

categorizing them using TN.

 1 1 = : (: ,..., :)n nNonvolatile Storage TI - list TN TI TN TI

2. Authentication Token Issue Protocol

The authentication token issue protocol defines a

secure 16-stage procedure for issuing an authentication

token, as shown in Fig.4. Details for individual steps are

as follows:

Step (1) : The user inputs to the host the user name UN,

password for the user name PW, and the secret TS to be

used for authentication token generation at the device,

and requests for authentication.

Step (2) : The host, after establishing a connection

with the device, obtains the device’s SN. If SN has been

obtained in prior or is available through different means,

then this step can be omitted.

Step (3)~(5) : the host requests the device to issue an

authentication token. The device first generates a random

number NC, then encrypts it using the shared key K to

generate the challenge CD=EK(NC). This challenge is

subsequently delivered to the host.

(1) UN, PW, TS

(4) Generate NC

Generate CD = EK(NC)

(2) Connection Setup & Get SN

(3) Request for Challenge

(5) CD

(11) DK(RS) and get NC', TN, MNAA, AL, G, TS
if (NC' != NC)

· Halt
else {

· Generate NT

· Generate T = EK(NT || TN || MNAA || AL || G || TS)
· Generate TI = EK(NT || SN)

}

(9) RS

(10) RS

(12) T

(13) Save T with SN
to the Token Storage

(14) Ack

(15) Store TI with TN
to the Nonvolatile Storage

(16) Ack

Server

User

Device Host

(7) Request for Authorization
with UN, PW, TS, SN, CD

(8) Authenticate the user with UN & PW
if (Authentication Failed)

· Halt
else {

· Verify user s access permissions with UN & SN
· Generate MNAA, AL, G and TN using security policy
· Find K with SN from DB

and get NC' = DK(CD)
· Generate RS = EK(NC' || TN || MNAA || AL || G || TS)

}

(6) SSL/TLS Connection

Fig. 4. Authentication Token Issue Protocol.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.2, JUNE, 2012 247

Step (6)~(7) : To ensure communication security, the

host establishes an SSL/TLS connection with the server.

Then the host sends the user-provided UN, PW and TS to

the server, along with the device-provided SN and CD, to

request for user authentication and authorization.

Step (8)~(9) : In these steps the server authenticates

the user and generates a response which provides the

user’s authorization information. First, the server

authenticates the user with UN and PW delivered through

the host. Then the server uses UN and SN to check the

user’s access permissions on the target device against the

security policy in effect. Upon successful authentication

and permission check, the server generates MNAA, AL

and TN for the user in correspondence to the pertaining

security policy, and also assigns group token ownership

G if desired by an authorized user. Next, the server

generates a response which includes the user’s

authorization information. Using SN to fetch the shared

key K from the database, the server decrypts the

challenge CD to obtain the device-generated NC’. Then all

user authorization information (MNAA, AL and G) are

concatenated with the information used in token

generation (TS and TN) and are encrypted using K to

generate the response RS = EK(NC' || TN || MNAA || AL ||

G || TS). The resulting response is sent to the host as a

response to the device’s challenge CD.

Step (10) : The host delivers the server’s response RS

to the device as a response to the device-generated CD.

Step (11)~(12) : In these steps, the device verifies RS

and then generates the authentication token T and its

corresponding token generation information TI. First, RS

is decrypted using K to obtain NC’, which is compared

with NC from step (4) to confirm that RS has not been

corrupted during transmission and to check that the user

is correctly authenticated and authorized by an authentic

server. Then the device generates a new random number

NT, concatenates it with MNAA, AL, G, TN and TS all

obtained from RS, and encrypts them to generate T =

EK(NT || TN || MNAA || AL || G || TS). Following on, the

device encrypts NT and SN to generate TI = EK(NT || SN),

which is the corresponding token generation information

for T. Finally, T is sent to the host.

Step (13)~(14) : The host stores the T and SN pair sent

by the device within its token storage, and acknowledges

the device of the result.

Step (15)~(16) : If all previous steps have been

successful, the device stores the TI and TN pair within its

non-volatile storage, acknowledges the host of the

successful result, and terminates the authentication token

issue procedure.

3. User Authentication Protocol

The user authentication protocol is used only after an

authentication token for a device has been successfully

issued. Therefore we can safely assume that the user

already possesses a device-generated T and that the

device has stored its corresponding TI stored within the

non-volatile storage. The protocol follows 12 steps as

shown in Fig. 5, with details for each step as follows:

Step (1) : The user inputs to the host the authentication

token T and its secret TS, and requests for authentication.

In case the user wants to replace the secret of T with a

new secret during the user authentication procedure, the

user also inputs new secret NewTS to the host.

Step (2)~(4) : The host establishes a connection with

the device and obtains the device’s serial number SN.

After confirming that user-input T is generated by the

target device through matching it with SN, the host sends

user authentication request to the device along with T and

TS. NewTS is sent to the device if available.

Step (5) : In this step, the device authenticates the user

using the host-delivered T and TS, along with TI which is

generated during authentication token issue procedure.

Then the device updates MNAA and re-generates T with

new MNAA. First, in user authentication, T is decrypted

using K to obtain TS’ which is compared with the user-

provided TS to confirm that the user is the owner of the

token. Then TN, the identification number of T, is used to

fetch T’s generation information TI from the non-volatile

storage. TI is decrypted using K to obtain NT’ and SN’,

which are in turn compared respectively with NT and SN.

If both comparisons match, authenticity of T is verified.

Thereafter, MNAA value in T is reduced by 1 to get

MNAA’. If MNAA’ is still 1 or greater after the reduction,

a new random number NT is generated in order to re-

generate T and TI with MNAA’.

Step (6) : The device notifies the host of the

authentication result and at the same time informs the

remaining number of authentications left by sending

MNAA’ value to the host. If the value of MNAA’ is equal

248 KEUN-YOUNG PARK et al : DEBUG PORT PROTECTION MECHANISM FOR SECURE EMBEDDED DEVICES

to or greater than 1, then newly generated T is also

delivered to the host.

Step (7)~(8) : The host acknowledges the device’s

authentication result notification. If new T has been sent

by the device, then the user’s T is replaced with the new T.

Step (9)~(10) : Upon receiving the host’s acknowledgement,

the device either removes TI from the non-volatile

storage if MNAA’ value equals zero, or replaces the

existing TI with the re-generated TI if MNAA’ value is 1

or greater. Debug port is then opened to enable user

access appropriate for the user’s access level AL, and an

acknowledgement is sent back to the host to signal the

initiation of a test.

Step (11)~(12) : The user performs tests using the

opened debug port features. After all tests are complete,

the device is notified to close the opened port.

4. Authentication Token Transfer Protocol

The authentication token transfer protocol defines a

secure 16-step procedure for transferring a group

authentication token between devices. Here we assume

that the T owned by the user already has G which

authorizes it to be transferred to other devices. In this

protocol the destination device behaves identically as the

target device in the authentication token issue protocol.

Details for individual steps are as follows:

Step (1) : The user inputs to the host T, TS, and a new

secret NewTS to be used at the destination device, and

requests for a token transfer.

Step (2)~(5) : The host establishes a connection with

the destination device, requests for an authentication

token to be generated on the device, and receives a

challenge CD.

Step (6)~(7) : The host establishes a connection with

the source device and delivers T, TS, NewTS, and CD to

the device. Then the host requests for authentication

token transfer.

Step (8)~(9) : In these steps, the source device verifies

the authentication token delivered by the host, generates

RD in response to CD, and sends it to the host. First, the

source device decrypts T delivered by the host using K to

obtain NT, TN, MNAA, AL, G, and TS’. TS’ is compared

with the user-provided TS to verify the user. Then TI is

fetched from the non-volatile storage using TN, and is

decrypted using K to obtain NT’ and SN’. NT’ and SN’ is

respectively compared with the previously-obtained NT

and device-provided SN to verify the authentication

token. If all previous steps have been successful, G is

checked to confirm that T is transferrable to other devices.

If T is confirmed as a group authentication token, RD is

generated in response to CD in the identical manner as in

step 8 of the authentication token issue protocol. While

existing TN, MNAA, AL, and G values in T are reused,

T’s secret is replaced with NewTS. After RD is

successfully generated, it is delivered to the host.

Step (10)~(12) : The host sends RD generated by the

source device to the destination device. Upon receiving

(1) T, TS, (NewTS)

(2) Connection Setup & Get SN

(4) Request for authentication with T, TS, (NewTS)

(6) Result with MNAA`, Re-generated T(if exists)

(8) Ack

(10) Ack

Host

(7) Update T with re-generated T

(9) if (MNAA` == 0)
· Delete TI from the Nonvolatile Storage

else
· Update TI with re-generated TI

Grant access with AL

(5) DK(T) and get NT, TN, MNAA, AL, G, TS`
if (TS`== TS){

· Load TI from the Nonvolatile Storage with TN
· DK(TI) and get NT`, SN`
if (NT`==NT && SN`==SN) {

· MNAA` = MNAA-1
if (MNAA` ≥ 1) {

· Generate new NT

· Re-generate T = EK(NT || TN || MNAA` || AL || G || TS(NewTS))
· Re-generate TI = EK(NT || SN)

}
} else · Halt

} else · Halt

Device

(3) Check SN

User

(12) Close

(11) Testing

Fig. 5. User Authentication Protocol.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.2, JUNE, 2012 249

RD, the destination device verifies the response in the

identical manner as in step 11 of the authentication token

issue protocol, then generates a new T and its

corresponding TI. The newly generated T is delivered to

the host.

Step (13)~(16) : After the new T is stored in the host,

the destination device stores TI in its storage and

completes the token transfer procedure.

V. SECURITY ANALYSIS

In this Chapter we analyze the security of the protocols

proposed by this paper’s debug port protection mechanism.

The server is assumed to maintain its security through

independent mechanisms. Physical attack to the device

with the purpose of key value analysis is left out of scope

of this paper. Notations used in this Chapter are identical

to the previous Chapter.

1. Authentication Token Issue Protocol

The authentication token issue protocol utilizes

SSL/TLS communication, which supports mutual

authentication between the host and the server while

ensuring data integrity and confidentiality. Between the

device and the server, symmetric encryption using shared

secret key K and random number NC generated by the

device ensures authenticity, integrity and confidentiality

of transferred authentication messages. The combination

of security mechanisms employed in the authentication

token issue protocol effectively protects against various

attacks aimed to obtain authentication tokens. For

instance, an attacker incapable of authorizing oneself

through the server may attempt to deceive the device by

submitting fraud information. To have the device

generate an authentication token based on fraud

information, the attacker needs to be able to arbitrarily

generate RS which correctly corresponds to device-

generated CD and includes user-provided TS. However,

without the secret key K, the attacker is incapable of

decrypting CD and thereby cannot arbitrarily generate a

valid RS. Therefore it is impossible for an authorized

attacker to deceive the device with fraud information.

Even authenticated users are restricted from arbitrarily

modifying MNAA, G, AL, and TN values within server-

generated RS due to the same limitation. In another case,

a previously authenticated user can store some information

from a previously successful authentication token

generation event, with hopes to attempt a replay attack

using the stored information at a later time. However,

such attacks are also foiled by the security mechanisms

of the token issue protocol. An authentic user can collect

T, CD, RS, and TS during a token issue. However, in order

for the user to deceive the device by posing as the server,

the device must generate a CD which corresponds to the

(1) T, TS, NewTS

(6) Connection Setup
& Get SN

(7) Request for token transfer
with T, TS, NewTS, CD

(9) RD

(14) Ack

Destination
Device

Source
Device

Host

(2) Connection Setup
& Get SN

(3) Request for Challenge

(4) Generate NC

Generate CD = EK(NC)

(5) Challenge CD

(11) Verify RD

Generate new T & TI

(12) New T

(13) Save new T with SN
to the Token Storage

(15) Store new TI with TN
to the Nonvolatile Storage

(16) Ack

(8) DK(T) and get NT, TN, MNAA, AL, G, TS`
if (TS` == TS){

· Load TI from the Nonvolatile Storage with TN
· DK(TI) and get NT`, SN`
if (NT`==NT && SN`==SN) {

if (G==True) {
· DK(CD) and get NC

· Generate RD = EK(NC || TN || MNAA || AL || G || NewTS)
· Delete TI from the Nonvolatile Storage

} else · Halt
} else · Halt

} else · Halt

(10) RD

User

Fig. 6. Authentication Token Transfer rotocol.

250 KEUN-YOUNG PARK et al : DEBUG PORT PROTECTION MECHANISM FOR SECURE EMBEDDED DEVICES

previously stored information. The random number NC

generated for each CD in every authentication token issue

attempt effectively prevents a prospective replay attacker

from deceiving the device using stored information.

2. User Authentication Protocol

The user authentication procedure can be assumed to

be secure as it is executed only in a local environment

where the device and the host is directly connected.

Authentication tokens, on the other hand, are stored

within the host and are subject to misplacement or theft,

introducing openings for attackers to use counterfeited

tokens to attempt access. However, such attack is

ineffective in the proposed approach. During step 5 of

the user authentication protocol, the device decrypts T

delivered by the host to obtain TS’ and compares it with

the host-delivered TS to verify the user. Thereafter, NT’

obtained by decrypting TI is compared with NT within T

while SN’ is compared to the device’s own SN in order to

check if T provided by the user is indeed the token that

the device itself has issued. An attacker without TS is

incapable of authenticating himself, and even with TS, he

cannot reuse a T issued by another device. Even if an

attacker has a previously legitimate token issued by the

device which is now expired, the device employs a

policy of replacing TI value after each successful

authentication and removing TI when a token’s MNAA

reaches zero, which can effectively counter such attacks.

3. Authentication Token Transfer Protocol

The authentication token transfer protocol is generally

similar to the authentication token issue protocol and

shares its security characteristics. Both protocols ensure

confidentiality and integrity of messages sent between the

source device and the destination device: confidentiality

by using the shared secret key K, and integrity by

employing the random number NC generated by the

destination device. These mechanisms make it impractical

for an attacker to intervene during a token transfer

between devices. Even if an attacker attempts to interfere

with a token transfer using a compromised host, it will

still be impossible to arbitrarily modify the AL and

MNAA value assigned to an authentication token. Further,

the source device completely deletes TI in order to

invalidate the user’s current token at step 8 of the

authentication token transfer protocol before delivering

RD to the destination device. Therefore a user is unable to

reuse a token to authenticate oneself if it has already

been transferred to another device.

VI. COMPARISON WITH RELATED WORKS

The proposed approach in this paper incorporates the

strengths of previous works while alleviating their

weaknesses, improving both security and availability in a

better balance between the two traits. As shown in Table

2, the proposed approach supports application of fine-

grained security policies through the server based on

various user and device information in a similar fashion

as existing three-entity protocols. A user may be assigned

different access levels depending on the time of

authentication, role assigned to the user, and the type of

device to be authenticated for. Unique to the proposed

approach is the feature to assign a limit to the number of

authentications permitted using a particular token. A

token with no authentications left are automatically

discarded by the device. This feature enhances the level

of security in comparison to [12], in which no control is

exerted over the usage of server-issued credential,

practically offering unlimited access after the initial issue.

As in [12], the proposed approach does not require server

access after the user has initially issued a token. In

addition, the proposed approach enables the user to test

multiple devices using a single token, and supports

changing of the secret of the token without server access.

These new features further enhance the availability of

debug ports in various test environments. For instance,

when a user needs to use more than one device for a task,

the user had to issue separate credentials for each device

individually through the server if the test environment

utilized existing protocols. With the proposed approach,

however, the user can request for a group authentication

token which grants access to all the devices designated to

the same group. In this way, devices in the field without

network access can be tested by issuing group

authentication tokens for them in advance and then

transferring them to the devices later. In another case

where a group of users use a device in turn, each user

needs to have issued his individual authentication token

for the device. The proposed approach alleviates such

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.2, JUNE, 2012 251

inefficiency by enabling users to share the token’s secret

for a single authentication token which grants access to

all users of the group. Unlike in [12], the proposed

approach lets the secret of a token be changed locally by

the user any time. If the shared secret has been

compromised or changes are made to membership of the

group, the group can simply change the existing token’s

secret on the device without communicating with the

server to issue a new token. Then, after the group‘s task

is finished, the token can simply be discarded to prevent

further use. With the proposed features, security can be

maintained above a certain level even in a test environment

where no network is accessible and collaboration with

unreliable partner is required.

The proposed approach does not demand higher

operational complexity on the device even though it

offers improved security and availability over previous

protocols. Specifically, the proposed approach employs

relatively simple and easy-to-implement operations in

comparison to [11] which require complex scalar

multiplications or [12] which repeatedly nests hash and

XOR operations to a degree hardware controller design is

made difficult due to complex operation order. Further,

the repetitive patterns found in the three protocols of the

proposed approach facilitate resource reuse and enable

simpler design of the hardware authentication IP block

on the device. The time required to authenticate users

accessing debug ports can be regarded insignificant,

taking into account the fact that simultaneous user

authentication is not possible and that authentication does

not introduce additional latency into the test process

afterwards.

VII. IMPLEMENTATION

The proposed approach of this paper is implemented

on a debugging environment based on the IEEE 1149.1

standard. The host’s authentication software communicates

with the server via SSL/TLS, while communication with

the device is through the debug tool. Trace32

manufactured by Louterbach was used for the debug tool

in our implementation. The authentication software

establishes a socket-based communication with the

Trace32 software and controls the authentication module’s

behavior through standard test instructions.

Specification for the authentication module used for

experimentation is as shown in Table 3. The authentication

module employs a 128-bit key AES-CBC symmetric

encryption algorithm and a 160-bit random number

generator. For TI storage, a 256-byte area within the on-

chip flash memory has been allocated and access to this

area is hardware-controlled to only permit read and write

access by the authentication module. For the purpose of

implementing the access controller, the scan register cells

within the device are organized into groups based on the

security sensitivity and relevancy of the corresponding

Table 2. Comparison of Security, Availability and Efficiency against Previous Works

 R.F.Buskey [11] K.Y.Park [12] Proposed Method

Fine-grained security policy control for user & device Yes Yes Yes

Control over user’s access level Yes Yes Yes

Control over user’s number of authentications N/A No Yes

User authentication without server access No Yes Yes

Multiple device testing without server access No No Yes

Token(credential)’s secret(pwd) change without server N/A No Yes

†Device operations count for token(credential) generation N/A 4H + 9X + R 4E + D + 2R

†Device operations count for user authentication 6M + 2R 3H + 5X + R 2E + 2D + R

† X: Exclusive OR operation, H: Cryptographic hash operation, R: Random nonce generation, E: Symmetric key encryption,
 D: Symmetric key decryption, M: Scalar multiplication

Table 3. Implementation Summary

Component Length

 AES Encryption Key 128-bit

 Random Number 160-bit

 Token
 384-bit (MNAA:12, AL:8, G:1,
 ND:160, TN:32, S:160
 and Padding bits)

 Token Generation Info.
 256-bit (NT:160, SN:48
 and Padding bits)

252 KEUN-YOUNG PARK et al : DEBUG PORT PROTECTION MECHANISM FOR SECURE EMBEDDED DEVICES

device components, and only the register cells permitted

access by the token’s access level are activated.

The authentication module and the access controller

are designed using Verilog HDL, synthesized with

Synopsys Sinplify Premier v9.62 and verified of operation

accuracy on Xilinx FPGA Spartan-3AN. A total of 1439

slices are used for implementation (excluding the

nonvolatile storage) as shown in Table 4. Synthesis using

Synopsys Design Compiler with Samsung Electronics 45

nm process technology yielded approximately 28k gates,

which is a competitive result in context of enhancing

security small embedded devices, for example mobile

devices, in which area overhead is an important factor

[16]. Further, the proposed approach does not incur time

over during the test procedure other than the time

necessary for authentication itself.

VIII. CONCLUSIONS

In this paper we have proposed a debug port protection

mechanism to prevent device hacking. As debug ports

exist for supporting device tests and maintenance

functions, their availability must be ensured even after

necessary security measures have been applied. Device

access by hackers should be prevented, while authorized

users should be permitted access all test functions

necessitated by their roles. The proposed approach

improves on security and availability over existing

methods through user authentication using tokens. After

a user issues a token for the device necessary to perform

one’s role, the token can be used to authenticate oneself

on a device to use its debug port anywhere, anytime. If a

group token has been issued, the token can be used to

authenticate the user on multiple devices in turn, thereby

ensuring high level of availability in various test

environments. Each token stores its owner’s access level

information and the maximum number of authentications

allowed using the token, which respectively controls

debug port access and prevents unchecked use of a token.

This enables us to use tokens to assign appropriate

security levels according to the role and authorizations of

a user. The proposed approach is inexpensive to

implement and is unrestricted by the application

environment, facilitating flexible adoption to various

environments in demand of debug port security or

hardware interface security.

ACKNOWLEDGMENTS

This research was supported by a research grant from

Samsung Electronics for constructing a trusted mobile

platform.

REFERENCES

[1] P. Kocher, et al, “Security as a new dimension in

embedded system design,” Proceedings of Design

Automation Conference (DAC), pp.753-760, Jun.,

2004.

[2] OMTP Hardware Working Group, “OMTP Security

Threats on Embedded Consumer Devices,” Open

Mobile Terminal Platform, May, 2009.

[3] R. Kapur, “Security vs. test quality: are they

mutually exclusive?,” Proceedings of International

Test Conference (ITC), pp.1414, Oct., 2004.

[4] Institute of Electrical and Electronic Engineers,

“Standard test access port and boundary-scan

architecture,” IEEE.Std. 1149.1, 2001.

[5] M. F. Breeuwsma, “Forensic imaging of embedded

systems using JTAG (boundary-scan),” Journal of

Digital Investigation, Vol.3, No.1, pp.32-42, Mar.,

2006.

[6] B. Yang, K. Wu, R. Karri, “Secure scan: a design-

for-test architecture for crypto chips,” IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol.25, No.10,

pp.2287-2293, Oct., 2006.

[7] Y. Liu, K. Wu, R. Karri, “Scan-based attacks on

linear feedback shift register based stream ciphers,”

ACM Transactions on Design Automation of

Electronic Systems, Vol.16, No.2, Article No.20,

Mar., 2011.

[8] A. Ashkenazi, D. Akselrod, “Platform independent

overall security architecture in multi-processor

Table 4. Implementation Result

Component Slices

 Authentication Module
 1366-Slices (AES Core: 941,
 RNG: 192, other: 233)

 Access Controller 21-Slices

 Debug Controller 52-Slices

 Total 1439-Slices

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.2, JUNE, 2012 253

system-on-chip integrated circuits for use in mobile

phones and handheld devices,” Computer &

Electrical Engineering, Vol.33, No.5-6, pp.407-424,

May, 2007.

[9] F. Novak, A. Biasizzo, “Security extension for

IEEE std 1149.1,” Journal of Electronic Testing:

Theory and Applications, Vol.22, No.3, pp.301-303,

Jun., 2006.

[10] J. Lee, et el, “Securing scan design using lock &

key technique,” Proceedings of International

Symposium on Defect and Fault Tolerance in VLSI

Systems (DFT), pp.51-62, Oct., 2005.

[11] R. F. Buskey, B. B. Frosik, “Protected JTAG,”

Proceedings of International Conference on

Parallel Processing Workshops (ICPPW), pp.405-

414, Aug., 2006.

[12] K. Y. Park, et el “JTAG Security System Based on

Credentials,” Journal of Electronic Testing: Theory

and Applications, Vol.26, No.5, pp.549-557, Oct.,

2010.

[13] L. W. Kim, J. D. Villasenor, “A System-On-Chip

Bus Architecture for Thwarting Integrated Circuit

Trojan Horses,” IEEE Transactions on Very Large

Scale Integration Systems, Vol.19, No.10, pp.1921-

1926, Oct., 2011.

[14] C. Lee, “Smart Bus Arbiter for QoS control in

H.264 decoders,” Journal of Semiconductor

Technology and Science,Vol.11, No.1, pp.33-39,

Mar., 2011.

[15] L. Pierce, S. Tragoudas, “Multi-Level Secure

JTAG Architecture,” Proceedings of International

On-Line Testing Symposium (IOLTS), pp.208-209,

Jul., 2011.

[16] J. Kim, S. Han, R. Jewell, “Timing Analysis

Techniques Review for sub-30 nm Circuit

Designs,” Journal of Semiconductor Technology

and Science,Vol.10, No.4, pp.292-299, Dec., 2010.

Keun-Young Park received the B.S

and M.S degree from the Department

of Computer Science and Engineering,

Sogang University, Seoul, Korea, in

2007 and 2009 respectively. He is

currently pursuing the Ph.D. degree

at the Department of Computer

Science and Engineering, Sogang University. His interests

include mobile security, cryptography, and system-on-a-

chip technology. He is a CISA, and CISSP.

Sang-Guun Yoo received the B.S

degree from the Faculty of Computer

System Engineering, Army Polytechnic

School, in 2002, and the M.S degree

from the Department of Computer

Science and Engineering, Sogang

University, Seoul, Korea, in 2010. He

is one of the co-founders of ExtremoSoftware (Microsoft

Gold Certified Partner), where worked as software

architect from 2001 to 2005. From 2005 to 2007, He

collaborated as a research member and professor in the

Department of Computer Science and Multimedia,

International University of Ecuador. From 2006 to 2007,

He also worked as an IT consultant for the Army

Intelligence Agency of Ecuador.

Juho Kim received the B.S. and

Ph.D. degrees in Computer and

Information Science from the

University of Minnesota in 1987 and

1995 respectively. He then worked as

a senior member of technical staff at

Cadence Design Systems until 1997.

Professor Kim joined the Department of Computer

Science and Engineering, Sogang University, Seoul,

Korea, in 1997, and was department chair from 2005 to

2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1800
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1800
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1800
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

