DOI QR코드

DOI QR Code

Object-oriented Prototype Framework For Tightly Coupled GIS-based Hydrologic Modeling

객체지향성 프로그래밍 방법을 통한 GIS 연계의 수문모델

  • 강광민 (삼성건설 토목사업부 토목사업지원팀) ;
  • 임창수 (경기대학교 공과대학 토목공학과) ;
  • 윤세의 (경기대학교 공과대학 토목공학과)
  • Received : 2012.02.12
  • Accepted : 2012.03.08
  • Published : 2012.06.30

Abstract

With the availability of multi-scale hydrologic data in public domain depending on DEM size, there is a need for a modeling framework that is capable of using these data to simulate hydrologic processes at multiple scales for different topographic and climate conditions for distributed hydrologic model. To address this need, an object-oriented approach, called Geographic and Hydrologic Information System Modeling Objects (GHISMO), is developed. Main hydrologic approaches in GHISMO are storage-release for direct runoff and SCS curve number method for infiltration part. This paper presents conceptual and structural framework of storage-release concept including its application to two watersheds will be presented.

DEM(Digital Elevation Model) 크기의 변화에 따라 특정 지역에 많은 규격의 수문 데이터가 존재할 수 있기 때문에, 어느 지역, 어느 기상 데이터에도 작동할 수 있는 수문 모형의 개발이 절실히 필요하게 되었다. 이와 같은 필요성을 설명하기 위해서 객체지향(object-oriented)적인 프로그래밍 기술을 적용한 GHISMO(Geographic and Hydrologic Information System Modeling Objects)라는 수문모형(hydrologic model)을 개발하였다. GHISMO의 가장 핵심적인 수문학적 접근방법은 저류-배출(storage-release)과 지표면 유효 강수량을 구하기 위하여 SCS curve number 방법을 사용한 것이다. 이 연구에서 수문모형의 모의실험 결과를 제공할 것이다.

Keywords

References

  1. Ajward, M.H. (1996). A spatially distributed unit hydrograph model using a geographic information system. Ph.D. Dissertation, Civil Engineering Department, University of Calgary, Calgary.
  2. Band, L.E., Tague, C.L., Brun, S.E., Tenenbaum, D.E., and Frernandez, R.A. (2000). Modeling watersheds as spatial object hierarchies: structure and dynamics. Transaction in GIS, Vol. 4, No. 3, pp. 181-196. https://doi.org/10.1111/1467-9671.00048
  3. Bian, L. (2007). Object-oriented representation of environmental phenomena: Is everything best represented as an object. Annals of the Association of American Geographers, Vol. 97, No. 2, pp. 267-281. https://doi.org/10.1111/j.1467-8306.2007.00535.x
  4. Boyer, J.F., Berkhoff, C., and Servat, E. (1996). Object-oriented programming for a simulation of the rainfall-discharge relationship. In: proceedings of Hydroinformatics 96. Balkema, A.A. Zurich, Switzerland, pp. 299-305.
  5. Chen, H., and Beschta, R. (1999). Dynamic hydrologic simulation of the Bear Brook Wathershed in Maine (BBWM). Environmental Monitoring and Assessment, Vol. 55, pp. 53-96. https://doi.org/10.1023/A:1006106826403
  6. Du, J., Xie, H., Xu, Y., and Xu, C. (2009). "Development and testing of a new storm runoff routing approach based on time variant spatially distributed travel time method." Journal of Hydrology, Vol. 369, pp. 44-54. https://doi.org/10.1016/j.jhydrol.2009.02.033
  7. Garrote, L., and Becchi, I. (1997). "Object-oriented software for distributed rainfall-runoff models." Journal of Computing in Civil Engineering, Vol. 11, pp. 190-194. https://doi.org/10.1061/(ASCE)0887-3801(1997)11:3(190)
  8. Goodchild, M., Parks, B., and Steyaert, L. (1993). Environmental Modeling with GIS. Oxford University Press: Oxford.
  9. Kang, K., and Merwade, V. (2011). "Development and Application of a Storage-Release Based Distributed Hydrologic Modeling using GIS." Journal ofHydrology, Vol. 403, pp. 1-13. https://doi.org/10.1016/j.jhydrol.2011.03.048
  10. Kiker, G.A., Clark, D.J., Martinez, C.J., and Schulz, R.E. (2006). "A java based, object-oriented modeling system for southern African hydrology." Transactions of ASABE, Vol. 49, No. 5, pp. 1419-1433. https://doi.org/10.13031/2013.22057
  11. Kralisch, S., Krause, P., and David, O. (2005). "Using the object modeling system for hydrological model development and application." Advances in Geosciences, Vol. 4, pp. 75-81. https://doi.org/10.5194/adgeo-4-75-2005
  12. Liu, Y.B., Gebremeskel, S., Smedt, F., Hoffmann, L., and Pfister, L. (2003). "A diffusive transport approach for flow routing in GIS-based flood modeling." Journal of Hydrology, Vol. 283, No. 1-4, pp. 91-106. https://doi.org/10.1016/S0022-1694(03)00242-7
  13. Luzio, Di, M., Srinivasan, R., Arnodl, J. G., Neitsch, S. L. (2002). Arcview Interface for SWAT2000. User's Guide. U.S. Department of Agriculture, Agriculture Research Service. Temple, Texas.
  14. Maidment, D.R. (1993). GIS and hydrologic modeling. In: Goodchild, M., Parks, B., and Steyaert, L. (Eds.). Environmental Modeling With GIS. Oxford University Press, New York, USA.
  15. Nelson, E.J. (1997). WMS v5.0 Reference Manual, Environmental Modeling Research Laboratory, Brigham Young University, Provo, Utah.
  16. Richardson, M.C., Branfireun, B.A., Robinson, V.B., and Graniero, P.A. (2007). "Towards simulating biogeochemical hot spots in the landscape: A geographic object-based approach." Journal of Hydrology, Vol. 342, No. 1-2, pp. 97-109. https://doi.org/10.1016/j.jhydrol.2007.05.016
  17. Wang, J., Hassett, J.M., and Endreny, T.A. (2005). "An object oriented approach to the description and simulation of watershed scale hydrologic processes." Computers and Geosciences, Vol. 31, No. 4, pp. 425-435. https://doi.org/10.1016/j.cageo.2004.09.025
  18. Whittaker, A., Wolfe, M., Godbole, R., and Alem, G. (1991). "Object-oriented modeling of hydrologic process. Al Applications in Natural Resource Management, Vol. 5, No. 4, pp. 49-58.