References
- 경남발전연구원 (2010). 남강댐 하류 수질개선 방안, 2010년 중점정책연구 보고서, 경남발전연구원, pp. 19-45.
- 박종윤, 박민지, 안소라, 김성준 (2009). "기후변화가 충주댐 유역의 하천수질에 미치는 영향평가를 위한 유역 모델링." 한국수자원학회논문집, 한국수자원학회, 제42권, 제10호, pp. 877-889.
- 배덕효, 정일원 (2005). "기후변화에 따른 수자원 영향평가." 방재정보, 한국방재협회, 제21호, pp. 16-22.
- 배민식 (2008). 크리킹 방법을 적용한 남강댐 유역의 유출 해석. 석사학위논문, 경상대학교, pp. 43-44.
- 이봉기 (2008). 인공신경망을 이용한 유역단위 기후변화 상세시나리오 추정. 석사학위논문, 단국대학교, pp. 9-22.
- 예령, 정세웅, 이흥수, 윤성완, 정희영(2009). "SWAT모형을이용한대청댐유역의기후인자에따른유출및유사량 민감도 평가" 수질보전 한국물환경학회지, 한국물환경학회, 제25권, 제1호, pp. 7-17.
- 정인균, 김성준, 박진혁, 황필선 (2007). "남강댐하류유역 분포형 강우유출모형 개발." 대한토목학회 정기학술대회, 대한토목학회, pp. 2035-2039.
- Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R. (1998). "Large area hydrologic modeling and assessment part I: model development." Journal of American Water Resources Association, JAWRA, Vol. 34, No. 1, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
- Brown, L.C., and Barnell, T.O. Jr. (1987). The enhanced water quality models QUAL2E and QUAL2E-UNCAS documentation and user manual EPA document EPA/600/3-87/007, USEPA, Athens, GA.
- Cannon, A.J. (2007). "Nonlinear analog predictor analysis: A coupled neural network/analog model for climate downscaling." Neural Networks, Vol. 20, Issue 4, pp. 444-453. https://doi.org/10.1016/j.neunet.2007.04.002
- Chung, S.W., Gassman, P.W,. Kramer, L.A., Williams, J.R., and Gu, R. (1999). "Validation of EPIC for two watersheds in southwest Iowa." Journal of Environmental Quality, Vol. 28, No. 3, pp. 971-979.
- Green, C.H., Tomer, M.D., Di Luzio, M., and Arnold, J.G. (2006). "Hydrologic evaluation of the Soil and Water Assessment Tool for a large tile-drained watershed in Iowa." Transactions of the ASAE, Vol. 49, No. 2, pp. 413-4220. https://doi.org/10.13031/2013.20415
- IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K.
- Legates, D.R., and McCabe, G.J. (1999). "Evaluating the use of 'goodness of fit' measures in hydrologic and hydro climatic model validation." Water Resource Research, Vol. 35, No. 1, pp. 233-241. https://doi.org/10.1029/1998WR900018
- Nash, J.E., and Sutcliffe, J.E. (1970). "River flow forecasting through conceptual models, Part I-A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
- Rojas, R. (1996). Neural Netwroks, Springer-Verlag, Berlin.
- Ramanarayanan, T.S., Williams, J.R., Dugas, W.A., Heuck, L.M., and McFarland A.M.S. (1997). Using APEC to identify alternative practiced for animal waste managementm, Minnea-polis, MN. ASAE, pp. 97-2209.
- Romanowicz, A. A., Vanclooster, M., Rounsevell, M., and Junesse, L. I. (2005). Sensitivity of the SWAT model to the soil and land use data parametrisation: A case study in the Thyle catchment, Belgium. Ecology Modelling, Vol. 187, pp. 27-39. https://doi.org/10.1016/j.ecolmodel.2005.01.025
- Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., Srinivasan, R., and Hauck, L. (2001a). "Validation of the SWAT model on a large river basin with point and nonpoint sources." Journal of the American Water Resources Association, Vol. 37, No. 5, pp. 1169-1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
- Santhi, C., Arnold, J.G., Williams, J.R., Hauck, L., and Dugas, W.A. (2001b). "Application of a watershed model to evaluate management effects on point and nonpoint source pollution." Transactions of the ASAE, Vol. 44, No. 6, pp. 1559-1570.
- Saxton, K.E., Rawls, W.J., Romberger, J.S., and Papendick, R.I. (1986). "Estimating generalized soil-water characteristics from texture." Soil Science Society of America Journal, Vol. 50, No. 4, pp. 1031-1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x
- Soil Survey Staff (1996). National Soil Survey Handbook. title 430-VI, USDA Natural Resources Conservation Service, U.S. Government Printing Office, Washington, D.C.
- Williams, J.R. (1975). Sediment-yield prediction with universal equation using runoff energy factor. In present and prospective technology for predicting sediment yield and sources, ARS-S-40, USDA-ARS.
- Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Roky Mountains. Agriculture Handbook 282, USDA-ARS.
- Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook 282, USDA-ARS.
- Zhang, X., Srinivassan, R., and Hao, F. (2007). "Predicting Hydrologic response to climate change in the Luohe river basin using the SWAT model." American Society of Agricultural and Biological Engineers, ASABE, Vol. 50, No. 3, pp. 901-910.
Cited by
- Effect of Change in Hydrological Environment by Climate Change on River Water Quality in Nam River Watershed vol.46, pp.8, 2013, https://doi.org/10.3741/JKWRA.2013.46.8.873
- Nn Evaluation of Climate Change Effects on Pollution Loads of the Hwangryong River Watershed in Korea vol.48, pp.3, 2015, https://doi.org/10.3741/JKWRA.2015.48.3.185
- Evaluation of SWAT Model Applicability for Runoff Estimation in Nam River Dam Watershed vol.58, pp.4, 2016, https://doi.org/10.5389/KSAE.2016.58.4.009
- Hydrological Assessment of Multifractal Space-Time Rainfall Downscaling Model: Focusing on Application to the Upstream Watershed of Chungju Dam vol.47, pp.10, 2014, https://doi.org/10.3741/JKWRA.2014.47.10.959
- Projection of runoff and sediment yield under coordinated climate change and urbanization scenarios in Doam dam watershed, Korea vol.8, pp.2, 2017, https://doi.org/10.2166/wcc.2016.068