DOI QR코드

DOI QR Code

Impact of Climate Change on Runoff in Namgang Dam Watershed

남강댐 유역에서의 기후변화에 대한 유출 영향

  • Lee, Jong-Mun (K-water Institute, Korea Water Resources Corporation) ;
  • Kim, Young-Do (Department of Environmental Science and Engineering (Nakdong River Environmental Research Center), Inje University) ;
  • Kang, Boo-Sik (Department of Civil and Environmental Engineering, Dankook University) ;
  • Yi, Hye-Suk (K-water Institute, Korea Water Resources Corporation)
  • 이종문 (한국수자원공사 K-water연구원, 인제대학교 환경공학부) ;
  • 김영도 (인제대학교 환경공학부(낙동강유역환경연구센터)) ;
  • 강부식 (단국대학교 토목환경공학과) ;
  • 이혜숙 (한국수자원공사 K-water연구원)
  • Received : 2012.02.12
  • Accepted : 2012.03.08
  • Published : 2012.06.30

Abstract

Climate change can impact hydrologic processes of a watershed system. The integrated modeling systems need to be built to predict and analyze the possible impacts of climate change on water environment for the optimal water resource operation and management. In this study, Namgang Dam watershed in the Nakdong River basin was selected as a study area. To evaluate the vulnerability of Namgang Dam watershed caused by climate change, the change in hydrologic runoff were predicted using the watershed model, SWAT. The RCM scenario was analyzed and downscaled using the artificial neural network and the dynamic quantile mapping. The results of this study will be utilized for suggesting an effective counterplan for climate change, and finally to propose the optimal water resource management method.

기후변화는 유역의 수문과정에 영향을 줄 수 있으며, 최적의 수자원 관리를 위해서는 이와 같은 기후변화로 인한 수환경 영향을 예측 및 분석하기 위한 통합적인 모의체계의 구축이 필요하다. 본 연구에서는 낙동강 수계의 남강댐 유역을 대상지역으로 선정하여, 기후변화 취약성을 평가하기 위하여 SWAT 모형을 이용하여 유출량 변화를 예측하였다. 기후시나리오 생산을 위하여 지역기후모형(RCM)의 분석 및 인공신경망을 통한 상세화기법을 적용하여 예측인자들에 대한 모의결과로부터 미래 기상자료를 구축하였다. 또한 강우의 경우 총량에 대한 보정을 위해 분위사상법을 적용하였다. 이와같은 시나리오를 검보정이 완료된 SWAT 모형에 적용하여 기후변화에 따른 유출량 변화를 예측하였다. 본 연구의 결과를 이용하여 기후변화에 대한 효율적인 대책을 제시하여 최적의 수자원관리방안을 도출할 수 있을 것으로 판단된다.

Keywords

References

  1. 경남발전연구원 (2010). 남강댐 하류 수질개선 방안, 2010년 중점정책연구 보고서, 경남발전연구원, pp. 19-45.
  2. 박종윤, 박민지, 안소라, 김성준 (2009). "기후변화가 충주댐 유역의 하천수질에 미치는 영향평가를 위한 유역 모델링." 한국수자원학회논문집, 한국수자원학회, 제42권, 제10호, pp. 877-889.
  3. 배덕효, 정일원 (2005). "기후변화에 따른 수자원 영향평가." 방재정보, 한국방재협회, 제21호, pp. 16-22.
  4. 배민식 (2008). 크리킹 방법을 적용한 남강댐 유역의 유출 해석. 석사학위논문, 경상대학교, pp. 43-44.
  5. 이봉기 (2008). 인공신경망을 이용한 유역단위 기후변화 상세시나리오 추정. 석사학위논문, 단국대학교, pp. 9-22.
  6. 예령, 정세웅, 이흥수, 윤성완, 정희영(2009). "SWAT모형을이용한대청댐유역의기후인자에따른유출및유사량 민감도 평가" 수질보전 한국물환경학회지, 한국물환경학회, 제25권, 제1호, pp. 7-17.
  7. 정인균, 김성준, 박진혁, 황필선 (2007). "남강댐하류유역 분포형 강우유출모형 개발." 대한토목학회 정기학술대회, 대한토목학회, pp. 2035-2039.
  8. Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R. (1998). "Large area hydrologic modeling and assessment part I: model development." Journal of American Water Resources Association, JAWRA, Vol. 34, No. 1, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  9. Brown, L.C., and Barnell, T.O. Jr. (1987). The enhanced water quality models QUAL2E and QUAL2E-UNCAS documentation and user manual EPA document EPA/600/3-87/007, USEPA, Athens, GA.
  10. Cannon, A.J. (2007). "Nonlinear analog predictor analysis: A coupled neural network/analog model for climate downscaling." Neural Networks, Vol. 20, Issue 4, pp. 444-453. https://doi.org/10.1016/j.neunet.2007.04.002
  11. Chung, S.W., Gassman, P.W,. Kramer, L.A., Williams, J.R., and Gu, R. (1999). "Validation of EPIC for two watersheds in southwest Iowa." Journal of Environmental Quality, Vol. 28, No. 3, pp. 971-979.
  12. Green, C.H., Tomer, M.D., Di Luzio, M., and Arnold, J.G. (2006). "Hydrologic evaluation of the Soil and Water Assessment Tool for a large tile-drained watershed in Iowa." Transactions of the ASAE, Vol. 49, No. 2, pp. 413-4220. https://doi.org/10.13031/2013.20415
  13. IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K.
  14. Legates, D.R., and McCabe, G.J. (1999). "Evaluating the use of 'goodness of fit' measures in hydrologic and hydro climatic model validation." Water Resource Research, Vol. 35, No. 1, pp. 233-241. https://doi.org/10.1029/1998WR900018
  15. Nash, J.E., and Sutcliffe, J.E. (1970). "River flow forecasting through conceptual models, Part I-A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  16. Rojas, R. (1996). Neural Netwroks, Springer-Verlag, Berlin.
  17. Ramanarayanan, T.S., Williams, J.R., Dugas, W.A., Heuck, L.M., and McFarland A.M.S. (1997). Using APEC to identify alternative practiced for animal waste managementm, Minnea-polis, MN. ASAE, pp. 97-2209.
  18. Romanowicz, A. A., Vanclooster, M., Rounsevell, M., and Junesse, L. I. (2005). Sensitivity of the SWAT model to the soil and land use data parametrisation: A case study in the Thyle catchment, Belgium. Ecology Modelling, Vol. 187, pp. 27-39. https://doi.org/10.1016/j.ecolmodel.2005.01.025
  19. Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., Srinivasan, R., and Hauck, L. (2001a). "Validation of the SWAT model on a large river basin with point and nonpoint sources." Journal of the American Water Resources Association, Vol. 37, No. 5, pp. 1169-1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  20. Santhi, C., Arnold, J.G., Williams, J.R., Hauck, L., and Dugas, W.A. (2001b). "Application of a watershed model to evaluate management effects on point and nonpoint source pollution." Transactions of the ASAE, Vol. 44, No. 6, pp. 1559-1570.
  21. Saxton, K.E., Rawls, W.J., Romberger, J.S., and Papendick, R.I. (1986). "Estimating generalized soil-water characteristics from texture." Soil Science Society of America Journal, Vol. 50, No. 4, pp. 1031-1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x
  22. Soil Survey Staff (1996). National Soil Survey Handbook. title 430-VI, USDA Natural Resources Conservation Service, U.S. Government Printing Office, Washington, D.C.
  23. Williams, J.R. (1975). Sediment-yield prediction with universal equation using runoff energy factor. In present and prospective technology for predicting sediment yield and sources, ARS-S-40, USDA-ARS.
  24. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Roky Mountains. Agriculture Handbook 282, USDA-ARS.
  25. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook 282, USDA-ARS.
  26. Zhang, X., Srinivassan, R., and Hao, F. (2007). "Predicting Hydrologic response to climate change in the Luohe river basin using the SWAT model." American Society of Agricultural and Biological Engineers, ASABE, Vol. 50, No. 3, pp. 901-910.

Cited by

  1. Effect of Change in Hydrological Environment by Climate Change on River Water Quality in Nam River Watershed vol.46, pp.8, 2013, https://doi.org/10.3741/JKWRA.2013.46.8.873
  2. Nn Evaluation of Climate Change Effects on Pollution Loads of the Hwangryong River Watershed in Korea vol.48, pp.3, 2015, https://doi.org/10.3741/JKWRA.2015.48.3.185
  3. Evaluation of SWAT Model Applicability for Runoff Estimation in Nam River Dam Watershed vol.58, pp.4, 2016, https://doi.org/10.5389/KSAE.2016.58.4.009
  4. Hydrological Assessment of Multifractal Space-Time Rainfall Downscaling Model: Focusing on Application to the Upstream Watershed of Chungju Dam vol.47, pp.10, 2014, https://doi.org/10.3741/JKWRA.2014.47.10.959
  5. Projection of runoff and sediment yield under coordinated climate change and urbanization scenarios in Doam dam watershed, Korea vol.8, pp.2, 2017, https://doi.org/10.2166/wcc.2016.068