DOI QR코드

DOI QR Code

Helicobacter pylori에 감염된 위상피세포에서 Skp2의 변화

Changes in Skp2 in Helicobacter pylori-Infected Gastric Epithelial Cells

  • 투고 : 2011.12.12
  • 심사 : 2012.02.09
  • 발행 : 2012.03.31

초록

It has been suggested that Helicobacter pylori(H. pylori) infections can promote the development and progression of gastric cancer through the modulation of cell cycle regulators such as $p27^{Kip1}$ and Skp2. $p27^{Kip1}$ is a cyclin-dependent kinase (CDK) inhibitor that blocks the G1/S transition necessary for cell cycle progression. Skp2 is a component of the ubiquitin ligase complex called $SCF^{Skp2}$(SKP1-Cullin-F-box), which specifically binds and promotes the degradation of $p27^{Kip1}$. A low level of $p27^{Kip1}$ and a high level of Skp2 have been reported in many types of cancers, including gastric cancer. In addition, a decrease in $p27^{Kip1}$ has been reported in H. pylori-infected specimens. However, data on Skp2 in H. pylori infections are limited. This study examines the changes in the status of Skp2 in H. pylori-infected gastric epithelial AGS cells. For this, we stimulated AGS cells with H. pylori(NCTC 11637) at the ratio of 300:1(bacterium:cell) for 6 hours. The results of an immunoprecipitation analysis, followed by a western blot, indicate that the interaction between Skp2 and 14-3-3 was elevated 3 hours after the H. pylori treatment. In addition, there was an increase in cytoplasmic Skp2 after 3 hours, whereas there was no change in the nuclear level. Since it has been reported that interaction with 14-3-3 and the subsequent cytoplasmic translocation of Skp2 can increase its protein stability, increases in the interaction with 14-3-3 and the cytoplasmic Skp2 after the H. pylori treatment can increase the level of Skp2 in AGS cells. This phenomenon may explain, at least to some extent, the mechanism underlying the relationship between H. pylori infections and gastric carcinogenesis.

키워드

참고문헌

  1. 보건복지부 암등록통계(통계청 지정통계 11744호)
  2. Baldassarre G, Belletti B, Bruni P, Boccia A, Trapasso F, Pentimalli F, Barone MV, Chiappetta G, Vento MT, Spiezia S, Fusco A, Viglietto G. 1999. Overexpressed cyclin D3 contributes to retaining the growth inhibitor p27 in the cytoplasm of thyroid tumor cells. J Clin Invest 104: 865-874 https://doi.org/10.1172/JCI6443
  3. Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M. 2004. Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C($C^{dh1}$) ubiquitin ligase. Nature 428:190-193 https://doi.org/10.1038/nature02330
  4. Chetty R. 2003. p27 protein and cancers of the gastrointestinal tract and liver: an overview. J Clin Gastroenterol 37:23-27 https://doi.org/10.1097/00004836-200307000-00008
  5. Eguchi H, Herschenhous N, Kuzushita N, Moss SF. 2003. Helicobacter pylori increases proteasome-mediated degradation of p27(kip1) in gastric epithelial cells. Cancer Res 63:4739-4746
  6. Gamboa-Dominguez A, Seidl S, Reyes-Gutierrez E, Hermannstadter C, Quintanilla-Martinez L, Busch R, Hofler H, Fend F, Luber B. 2007. Prognostic significance of p21WAF1/CIP1, $p27^{Kip1}$, p53 and E-cadherin expression in gastric cancer. J Clin Pathol 60:756-761
  7. Gao D, Inuzuka H, Tseng A, Wei W. 2009. Akt finds its new path to regulate cell cycle through modulating Skp2 activity and its destruction by APC/$C^{dh1}$. Cell Division 4:11 https://doi.org/10.1186/1747-1028-4-11
  8. Kim SS, Meitner P, Konkin TA, Cho YS, Resnick MB, Moss SF. 2006. Altered expression of Skp2, c-Myc and p27 proteinsbut not mRNA after H. pylori eradication in chronicgastritis. Mod Pathol 19:49-58 https://doi.org/10.1038/modpathol.3800476
  9. Konturek PC, Konturek SJ, Brzozowski T. 2006. Gastric cancer and Helicobacter pylori infection. J Physiol Pharmacol 57:51-65
  10. Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami G, Pagano M. 2001. Role of the F-box protein Skp2 in lymphomagenesis. PNAS 98:2515-2520 https://doi.org/10.1073/pnas.041475098
  11. Lauren P. 1965. Two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. Acta Pathol Microbiol Scand 64:31-49 https://doi.org/10.1111/apm.1965.64.1.31
  12. Lim JW, Kim KH, Kim H. 2008. NF-kB p65 regulates nuclear translocation of Ku70 via degradation of heat shock cognate protein 70 in pancreatic acinar AR42J cells. Intl J Biochem Cell Biol 40:2065-2077 https://doi.org/10.1016/j.biocel.2008.02.015
  13. Lin H, Wang G, Chen Z, Teruya-Feldstein J, Pandolfi PP. 2009. Phosphorylation-dependent regulation cytosolic localization andoncogenic function of Skp2 by Akt/PKB. Nat Cell Biol 11:420-432 https://doi.org/10.1038/ncb1849
  14. Martin E, Cacheux V, Cave H, Lapierre JM, Le Paslier D, Grandchamp B. 1995. Localization of the CDKN4/$p27^{Kip1}$ gene to human chromosome 12p12.3. Hum Genet 96:668-670 https://doi.org/10.1007/BF00210296
  15. Masciullo V, Sgambato A, Pacilio C, Pucci B, Ferrandina G, Palazzo J, Carbone A, Cittadini A, Mancuso S, Scambia G, Giordano A. 1999. Frequent loss of expression of the cyclin-dependent kinase inhibitor p27 in epithelial ovarian cancer. Cancer Res 59: 3790-3794
  16. Myong NH. 2003. Immunohistochemical study of $p27^{Kip1}$ expression in gastric adenomas and early gastric carcinoma-analysis of 65 cases-. Korean J Pathol 37:325-332
  17. Peek RM Jr, Blaser MJ. 2002. Helicobacter pylori and gastro-intestinaltract adenocarcinomas. Nat Rev Cancer 2:28-37 https://doi.org/10.1038/nrc703
  18. Philipp-Staheli J, Payne SR, Kemp CJ. 2001. p27(Kip1): regulation and function of a haploin sufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 264:148-168 https://doi.org/10.1006/excr.2000.5143
  19. Poon IK, Jans DA. 2005. Regulation of nuclear transport: central rolein development and transformation? Traffic 6:173-186 https://doi.org/10.1111/j.1600-0854.2005.00268.x
  20. Shirin H, Sordillo EM, Kolevska TK, Hibshoosh H, Kawabata Y, Oh SH, Kuebler JF, Delohery T, Weghorst CM, Weinstein IB, Moss SF. 2000. Chronic Helicobacter pylori infection induces an apoptosis-resistant phenotype associated with decreased expression of p27(kip1). Infect Immun 68:5321-5328 https://doi.org/10.1128/IAI.68.9.5321-5328.2000
  21. Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG. 2004. Degradation of the SCF component Skp2 in cell cycle phase G1 by the anaphase-promotingcomplex. Nature 428:194-8 https://doi.org/10.1038/nature02381
  22. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC. 1997. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91:961-971 https://doi.org/10.1016/S0092-8674(00)80487-0
  23. Yaffe MB. 2002. How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513:53-57 https://doi.org/10.1016/S0014-5793(01)03288-4
  24. Yu J, Leung WK, Ng EK, To KF, Ebert MP, Go MY, Chan WY, Chan FK, Chung SC, Malfertheiner P, Sung JJ. 2001. Effect of Helicobacter pylori eradication on expression of cyclin D2 and p27 in gastric intestinal metaplasia. Aliment Pharmacol Ther 15:1505-1511 https://doi.org/10.1046/j.1365-2036.2001.01038.x