DOI QR코드

DOI QR Code

SANDWICH-TYPE THEOREMS FOR A CLASS OF INTEGRAL OPERATORS ASSOCIATED WITH MEROMORPHIC FUNCTIONS

  • Cho, Nak-Eun (Department of Applied Mathematics, Pukyong National University)
  • Received : 2012.01.24
  • Accepted : 2012.02.23
  • Published : 2012.05.31

Abstract

The purpose of the present paper is to investigate some subordination and superordination preserving properties of certain integral operators de ned on the space of meromorphic functions in the puncture open unit disk. The sandwich-type theorems for these integral operators are also presented.

Keywords

References

  1. S. K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roumaine Math. Pures Appl. 22 (1977), 295-297.
  2. S. S. Bhoosnurmath and S. R. Swamy, Certain integrals for classes of univalent meromorphic functions, Ganita 44 (1993), 19-25.
  3. T. Bulboaca, A class of superordination-preserving integral operators, Indag. Math. N. S. 13 (2002), 301-311. https://doi.org/10.1016/S0019-3577(02)80013-1
  4. N. E. Cho and H. M. Srivastava, A class of nonlinear integral operators preserving subordination and superordination, Integral Transforms Spec. Funct. 18 (2007), 95-107. https://doi.org/10.1080/10652460601135342
  5. A. Dernek, Certain classes of meromorphic functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 42 (1988), 1-8.
  6. S. P. Dwivedi, G. P. Bhargava and S. K. Shukla, On some classes of meromorphic univalent functions, Rev. Roumaine Math. Pures Appl. 25 (1980), 209-215.
  7. R. M. Goel and N. S. Sohi, On a class of meromorphic functions, Glas. Mat. 17(37) (1981), 19-28.
  8. D. J. Hallenbeck and T. H. MacGregor, Linear problems and convexity techniques in geometric function theory, Pitman Publishing Limited, London, 1984.
  9. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 2 (1952), 169-185.
  10. S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171. https://doi.org/10.1307/mmj/1029002507
  11. S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Different. Equations 56 (1985), 297-309. https://doi.org/10.1016/0022-0396(85)90082-8
  12. S. S. Miller and P. T. Mocanu, Differential Subordinations, Theory and Applications, Marcel Dekker, Inc., New York, Basel, 2000.
  13. S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl. 48 (2003), 815-826. https://doi.org/10.1080/02781070310001599322
  14. S. S. Miller, P. T. Mocanu and M. O. Reade, Subordination-preserving integral operators, Trans. Amer. Math. Soc. 283 (1984), 605-615. https://doi.org/10.1090/S0002-9947-1984-0737887-4
  15. S. Owa and H. M. Srivastava, Some subordination theorems involving a certain family of integral operators, Integral Transforms Spec. Funct. 15 (2004), 445-454. https://doi.org/10.1080/10652460410001727563
  16. Ch. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, Gottingen, 1975.

Cited by

  1. Some sandwich theorems for meromorphic univalent functions defined by new integral operator vol.24, pp.3, 2012, https://doi.org/10.1080/09720502.2020.1818422