DOI QR코드

DOI QR Code

ON INTERVAL VALUED FUZZY h-IDEALS IN HEMIRINGS

  • Shabir, Muhammad (Department of Mathematics, Quaid-I-Azam University) ;
  • Malik, Noshin (Department of Mathematics, Quaid-I-Azam University) ;
  • Mahmood, Tahir (Department of Mathematics, International Islamic University)
  • Received : 2011.04.28
  • Accepted : 2011.08.07
  • Published : 2012.01.31

Abstract

In this paper we discuss some results associated with interval valued fuzzy h-ideals of hemirings and characterize hemirings by the properties of their interval valued fuzzy h-ideals.

Keywords

References

  1. A. W. Aho and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison Wesley, Reading, MA, 1979.
  2. J. Ahsan, K. Saifullah and M. F. Khan, Fuzzy Semirings, Fuzzy Sets Syst. 60 (1993), 309-320. https://doi.org/10.1016/0165-0114(93)90441-J
  3. J. Ahsan, Semirings characterized by their fuzzy ideals, J. Fuzzy Math. 6 (1998), 181-192.
  4. L. B. Beasley and N. G. Pullman, Operators that preserves semiring matrix functions, Linear Algebra Appl. 99 (1988), 199-216. https://doi.org/10.1016/0024-3795(88)90132-2
  5. L. B. Beasley and N. G. Pullman, Linear operators strongly preserving idempotent matrices over semirings, Linear Algebra Appl. 160 (1992), 217-229 https://doi.org/10.1016/0024-3795(92)90448-J
  6. R. Biswas, Rosenfeld's fuzzy subgroups with intervalued membership function, Fuzzy sets and systems 63 (1994), 87-90. https://doi.org/10.1016/0165-0114(94)90148-1
  7. W. A. Dudek, M. Shabir and R. Anjum, Characterizations of Hemirings by their hideals, Comp. and Maths. with Appl. 59 (2010), 3167-3179. https://doi.org/10.1016/j.camwa.2010.03.003
  8. S. Ghosh, Matrices over semirings, Inform. Sci. 90 (1996), 221-230. https://doi.org/10.1016/0020-0255(95)00283-9
  9. K. Glazek, A guide to litrature on semirings and their applications in mathematics and information sciences: with complete bibliography, Kluwer Acad. Publ. Nederland, 2002.
  10. J. S. Golan, Semirings and their applications, Kluwer Acad. Publ. 1999.
  11. U. Hebisch and H. J. Weinert, Semirings: Algebraic Theory and Applications in the Computer Science, World Scientific, 1998.
  12. M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 6 (1958), 321.
  13. K. Iizuka, On Jacobson radical of a semiring, Tohoku Math. J. 11 (1959), 409-421. https://doi.org/10.2748/tmj/1178244538
  14. D. R. La Torre, On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen 12 (1965), 219-226.
  15. X. P. Li and G. J.Wang, The $S_H$ interval valued fuzzy subgroups, Fuzzy sets and systems 112 (2000), 319-325. https://doi.org/10.1016/S0165-0114(98)00092-X
  16. J. N. Mordeson and D. S. Malik, Fuzzy Automata and Languages, Theory and Applications, Computational Mathematics Series, Chapman and Hall/CRC, Boca Raton 2002.
  17. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517. https://doi.org/10.1016/0022-247X(71)90199-5
  18. M. Shabir and T. Mahmood, Characterizations of Hemirings by Interval Valued fuzzy ideals, Quasigroups and Related Systems 19 (2011), 101-113.
  19. G. Sun, Y. Yin and Y. Li, Interval valued fuzzy h-ideals of hemirings, Int. Math. Forum 5 (2010), 545-556.
  20. W. Wechler, The concept of fuzziness in automata and language theory, Akademic verlog, Berlin, 1978.
  21. Xueling M. A. and J. Zhan, On fuzzy h-ideals of hemirings, J. Syst. Sci. and Complexity 20 (2007), 470-478. https://doi.org/10.1007/s11424-007-9043-0
  22. Y. Q. Yin and H. Li, The charatecrizations of h-hemiregular hemirings and h-intra-hemiregular hemirings, Inform. Sci. 178 (2008), 3451-3464. https://doi.org/10.1016/j.ins.2008.04.002
  23. H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934), 914-920 https://doi.org/10.1090/S0002-9904-1934-06003-8
  24. L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Cited by

  1. A consensus model based on rough bipolar fuzzy approximations vol.36, pp.4, 2012, https://doi.org/10.3233/jifs-181223