References
- A. W. Aho and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison Wesley, Reading, MA, 1979.
- J. Ahsan, K. Saifullah and M. F. Khan, Fuzzy Semirings, Fuzzy Sets Syst. 60 (1993), 309-320. https://doi.org/10.1016/0165-0114(93)90441-J
- J. Ahsan, Semirings characterized by their fuzzy ideals, J. Fuzzy Math. 6 (1998), 181-192.
- L. B. Beasley and N. G. Pullman, Operators that preserves semiring matrix functions, Linear Algebra Appl. 99 (1988), 199-216. https://doi.org/10.1016/0024-3795(88)90132-2
- L. B. Beasley and N. G. Pullman, Linear operators strongly preserving idempotent matrices over semirings, Linear Algebra Appl. 160 (1992), 217-229 https://doi.org/10.1016/0024-3795(92)90448-J
- R. Biswas, Rosenfeld's fuzzy subgroups with intervalued membership function, Fuzzy sets and systems 63 (1994), 87-90. https://doi.org/10.1016/0165-0114(94)90148-1
- W. A. Dudek, M. Shabir and R. Anjum, Characterizations of Hemirings by their hideals, Comp. and Maths. with Appl. 59 (2010), 3167-3179. https://doi.org/10.1016/j.camwa.2010.03.003
- S. Ghosh, Matrices over semirings, Inform. Sci. 90 (1996), 221-230. https://doi.org/10.1016/0020-0255(95)00283-9
- K. Glazek, A guide to litrature on semirings and their applications in mathematics and information sciences: with complete bibliography, Kluwer Acad. Publ. Nederland, 2002.
- J. S. Golan, Semirings and their applications, Kluwer Acad. Publ. 1999.
- U. Hebisch and H. J. Weinert, Semirings: Algebraic Theory and Applications in the Computer Science, World Scientific, 1998.
- M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 6 (1958), 321.
- K. Iizuka, On Jacobson radical of a semiring, Tohoku Math. J. 11 (1959), 409-421. https://doi.org/10.2748/tmj/1178244538
- D. R. La Torre, On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen 12 (1965), 219-226.
-
X. P. Li and G. J.Wang, The
$S_H$ interval valued fuzzy subgroups, Fuzzy sets and systems 112 (2000), 319-325. https://doi.org/10.1016/S0165-0114(98)00092-X - J. N. Mordeson and D. S. Malik, Fuzzy Automata and Languages, Theory and Applications, Computational Mathematics Series, Chapman and Hall/CRC, Boca Raton 2002.
- A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517. https://doi.org/10.1016/0022-247X(71)90199-5
- M. Shabir and T. Mahmood, Characterizations of Hemirings by Interval Valued fuzzy ideals, Quasigroups and Related Systems 19 (2011), 101-113.
- G. Sun, Y. Yin and Y. Li, Interval valued fuzzy h-ideals of hemirings, Int. Math. Forum 5 (2010), 545-556.
- W. Wechler, The concept of fuzziness in automata and language theory, Akademic verlog, Berlin, 1978.
- Xueling M. A. and J. Zhan, On fuzzy h-ideals of hemirings, J. Syst. Sci. and Complexity 20 (2007), 470-478. https://doi.org/10.1007/s11424-007-9043-0
- Y. Q. Yin and H. Li, The charatecrizations of h-hemiregular hemirings and h-intra-hemiregular hemirings, Inform. Sci. 178 (2008), 3451-3464. https://doi.org/10.1016/j.ins.2008.04.002
- H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934), 914-920 https://doi.org/10.1090/S0002-9904-1934-06003-8
- L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
Cited by
- A consensus model based on rough bipolar fuzzy approximations vol.36, pp.4, 2012, https://doi.org/10.3233/jifs-181223