DOI QR코드

DOI QR Code

Study on Dispersion Characteristics for Fire Scenarios in an Urban Area Using a CFD-WRF Coupled Model

CFD-WRF 접합 모델을 이용한 도시 지역 화재 시나리오별 확산 특성 연구

  • Choi, Hee-Wook (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Do-Yong (BK21 Graduate School of Earth Environmental System, Pukyong National University) ;
  • Kim, Jae-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Ki-Young (Environmental Prediction Research Inc.) ;
  • Woo, Jung-Hun (Department of Advanced Technology Fusion, Konkuk University)
  • 최희욱 (부경대학교 환경대기과학과) ;
  • 김도용 (부경대학교 BK21 지구환경시스템사업단) ;
  • 김재진 (부경대학교 환경대기과학과) ;
  • 김기영 ((주)환경예측연구소) ;
  • 우정헌 (건국대학교신기술융합학과)
  • Received : 2011.11.16
  • Accepted : 2012.01.25
  • Published : 2012.03.31

Abstract

The characteristics of flow and pollutant dispersion for fire scenarios in an urban area are numerically investigated. A computational fluid dynamics (CFD) model coupled to a mesoscale weather research and forecasting (WRF) model is used in this study. In order to more accurately represent the effect of topography and buildings, the geographic information system (GIS) data is used as an input data of the CFD model. Considering prevailing wind, firing time, and firing points, four fire scenarios are setup in April 2008 when fire events occurred most frequently in recent five years. It is shown that the building configuration mainly determines wind speed and direction in the urban area. The pollutant dispersion patterns are different for each fire scenario, because of the influence of the detailed flow. The pollutant concentration is high in the horse-shoe vortex and recirculation zones (caused by buildings) close to the fire point. It thus means that the potential damage areas are different for each fire scenario due to the different flow and dispersion patterns. These results suggest that the accurate understanding of the urban flow is important to assess the effect of the pollutant dispersion caused by fire in an urban area. The present study also demonstrates that CFD model can be useful for the assessment of urban environment.

Keywords

References

  1. 김명배, 한용식, 최병일, 도규형, 2009: 공동주택 실물화재 실험. 한국화재소방학회논문지, 23, 104-111.
  2. 김재진, 2007: 장애물 외관비가 주변흐름에 미치는 영향. 대기, 17, 381-391.
  3. 김재진, 백종진, 2005: CFD 모형을 이용한 도시 지역 흐름 및 스칼라 분산 연구. 한국기상학회지, 41, 821-837.
  4. 박정은, 이철규, 이한림, 정진상, 이권호, 김정은, 김영준, 2005: 중국 동부 지역 화재로 인한 광주의 대기질에 대한 영향. 대한환경공학회 2005 추계학술연구발표회논문집, 681-683.
  5. 소방방재청, 2009: 2009년도 화재통계연감. 소방방재청국 가화재정보센터(http://www.nfds.go.kr/).
  6. 이영수, 김재진, 2011: 도시지역에서 아파트 단지가흐름과 확산에 미치는 영향. 대기, 21, 95-108.
  7. 전흥균, 최영상, 추홍록, 2007: 다세대주택의 화재안전평가에 대한 수치해석 연구-계단실 개구부의 개폐가 화재 특성에 미치는 영향. 한국화재소방학회 논문지, 21, 15-23.
  8. Baik, J.-J., and J.-J. Kim, 1999: A numerical study of flow and pollutant dispersion characteristics in urban street canyons. J. Appl. Meteor., 38, 1576-1589. https://doi.org/10.1175/1520-0450(1999)038<1576:ANSOFA>2.0.CO;2
  9. Baik, J.-J., R.-S. Park, H.-Y. Chun, and J.-J. Kim, 2000: A laboratory model of urban street-canyon flows. J. Appl. Meteor., 39, 1592-1600. https://doi.org/10.1175/1520-0450(2000)039<1592:ALMOUS>2.0.CO;2
  10. Baik, J.-J., J.-J. Kim, and H. J. S. Fernando, 2003: A CFD model for simulating urban flow and dispersion. J. Appl. Meteor., 42, 1636-1648. https://doi.org/10.1175/1520-0450(2003)042<1636:ACMFSU>2.0.CO;2
  11. Baik, J.-J., S.-B. Park, and J.-J. Kim, 2009: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. J. Appl. Meteor. Climatol., 48, 1667-1681. https://doi.org/10.1175/2009JAMC2066.1
  12. Brown, M. J., R. E. Lawson Jr., D. S. DeCroix, and R. L. Lee, 2000: Mean flow and turbulence measurements around a 2-D array of buildings in a wind tunnel. 11th Joint Conference on the Applications of Air Pollution Meteorology with the A&WMA, Long Beach, CA, USA, 35-40.
  13. Cheng, X., and F. Hu, 2005: Numerical studies on flow fields around buildings in an urban street canyon and cross-road. Adv. Atmos. Sci., 22, 290-299. https://doi.org/10.1007/BF02918518
  14. Cox, C. F., B. Z. Cybyk, J. P. Boris, Y. T. Fung, and S. W. Chang, 2000: Coupled microscale-mesoscale modeling of contaminant transport in urban environments. Preprints, Third Symp. On the Urban Environment, Davis, CA, Amer. Meteor. Soc., 8.2. [Available online at http://ams.confex.com/ams/AugDavis/techprogram/paper_15208.htm]
  15. DePaul, F. T., and C. M. Sheih, 1985: A tracer study of dispersion in an urban street canyon. Atmos. Environ., 19, 555-559. https://doi.org/10.1016/0004-6981(85)90034-4
  16. DePaul, F. T., and C. M. Sheih, 1986: Measurements of wind velocities in a street canyon. Atmos. Environ., 20, 455-459. https://doi.org/10.1016/0004-6981(86)90085-5
  17. Dudhia, J., 1996: A multi-layer soil temperature model for MM5. 6th Annual PSU/NCAR Mesoscale Model (MM5) Users Workshop, Penn. State Univ., Boulder, CO., USA.
  18. Ehrhard, J., I. A. Khatib, C. Winkler, R. Kunz, N. Moussiopoulos, and G. Ernst, 2000: The microscale model MIMO: Development and assessment. J. Wind Eng. Ind. Aerodyn., 85, 163-176. https://doi.org/10.1016/S0167-6105(99)00137-3
  19. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
  20. Janjic, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
  21. Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme, The representation of cumulus convection in numerical models. Edited by K. A. Emanuel and D. J. Raymond, Am. Meteorol. Soc., Boston, MA., USA, 246 pp.
  22. Kim, J.-J., and J.-J. Baik, 1999: A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons. J. Appl. Meteor., 38, 1249-1261. https://doi.org/10.1175/1520-0450(1999)038<1249:ANSOTE>2.0.CO;2
  23. Kim, J.-J., and J.-J. Baik, 2001: Urban street-canyon flows with bottom heating. Atmos. Environ., 35, 3395-3404. https://doi.org/10.1016/S1352-2310(01)00135-2
  24. Kim, J.-J., and J.-J. Baik, 2005: Physical experiments to investigate the effects of street bottom heating and inflow turbulence on urban street-canyon flow. Adv. Atmos. Sci., 22, 230-237. https://doi.org/10.1007/BF02918512
  25. Lee, I. Y., and H. M. Park, 1994: Parameterization of the pollutant transport and dispersion in urban street canyons. Atmos. Environ., 28, 2343-2349. https://doi.org/10.1016/1352-2310(94)90488-X
  26. Liu, C.-H., and M. C. Barth, 2002: Large-eddy simulation of flow and scalar transport in a modeled street canyon. J. Appl. Meteor., 41, 660-673. https://doi.org/10.1175/1520-0450(2002)041<0660:LESOFA>2.0.CO;2
  27. Liu, H. Z., B. Liang, F. R. Zhu, B. Y. Zhang, and J. G. Sang, 2003: A laboratory model for the flow in urban street canyons induced by bottom heating. Adv. Atmos. Sci., 20, 554-564. https://doi.org/10.1007/BF02915498
  28. Meroney, R. N., M. Pavageau, S. Rafailidis, and M. Schatzmann, 1996: Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyon. J. Wind Eng. Ind. Aerodyn., 62, 37-56. https://doi.org/10.1016/S0167-6105(96)00057-8
  29. Mitchell, K., 2005: The community Noah Land-Surface Model (LSM). [Available online at ftp://ftp.emc.ncep.noaa.gov/mmb/gcp/ldas/noahlsm/ver_2.7.1]
  30. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102(D14), 16663-16682. https://doi.org/10.1029/97JD00237
  31. Nakamura, Y., and T. R. Oke, 1988: Wind, temperature, and stability conditions in an east-west oriented urban canyon. Atmos. Environ., 22, 2691-2700. https://doi.org/10.1016/0004-6981(88)90437-4
  32. Patankar, S. V., 1980: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, 197 pp.
  33. Rotach, M. W., 1995: Profiles of turbulence statistics in and above an urban street canyon. Atmos. Environ., 29, 1473-1486. https://doi.org/10.1016/1352-2310(95)00084-C
  34. Sini, J.-F., S. Anquetin, and P. G. Mestayer, 1996: Pollutant dispersion and thermal effects in urban street canyons. Atmos. Environ., 30, 2659-2677. https://doi.org/10.1016/1352-2310(95)00321-5
  35. Uehara, K., S. Murakami, S. Oikawa, and S. Wakamatsu, 2000: Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmos. Environ., 34, 1553-1562. https://doi.org/10.1016/S1352-2310(99)00410-0
  36. Versteeg, H. K., and W. Malalasekera, 1995: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Longman, Malaysia, 257 pp.
  37. Yakhot, V., S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziable, 1992: Development of turbulence models for shear flow by a double expansion technique. Physics of Fluids, 4, 1510-1520. https://doi.org/10.1063/1.858424

Cited by

  1. Blocking Effects of Buildings on Sunshine Duration at Seoul and Daegu ASOSs vol.24, pp.1, 2014, https://doi.org/10.14191/Atmos.2014.24.1.017
  2. Assessment of Observation Environment for Surface Wind in Urban Areas Using a CFD model vol.25, pp.3, 2015, https://doi.org/10.14191/Atmos.2015.25.3.449
  3. Evaluation of Observation Environment for Weather Stations Located in Metropolitan Areas vol.31, pp.2, 2015, https://doi.org/10.7780/kjrs.2015.31.2.13
  4. Effects of Differential Heating by Land-Use types on flow and air temperature in an urban area vol.32, pp.6, 2016, https://doi.org/10.7780/kjrs.2016.32.6.5