DOI QR코드

DOI QR Code

Eigenspace-Based Adaptive Array Robust to Steering Errors By Effective Interference Subspace Estimation

효과적인 간섭 부공간 추정을 통한 조향에러에 강인한 고유공간 기반 적응 어레이

  • 최양호 (강원대학교 전자통신전공)
  • Received : 2012.01.19
  • Accepted : 2012.04.12
  • Published : 2012.04.30

Abstract

When there are mismatches between the beamforming steering vector and the array response vector for the desired signal, the performance can be severely degraded as the adaptive array attempts to suppress the desired signal as well as interferences. In this paper, an robust method is proposed for the adaptive array in the presence of both direction errors and random errors in the steering vector. The proposed method first finds a signal-plus-interference subspace (SIS) from the correlation matrix, which in turn is exploited to extract an interference subspace based on the structure of a uniform linear array (ULA), the effect of the desired signal direction vector being reduced as much as possible. Then, the weight vector is attained to be orthogonal to the interference subspace. Simulation shows that the proposed method, in terms of signal-to-interference plus noise ratio (SINR), outperforms existing ones such as the doubly constrained robust Capon beamformer (DCRCB).

원하는 신호의 어레이 응답벡터와 조향벡터사이에 불일치가 있다면 적응 어레이는 원하는 신호와 간섭신호를 동시에 감쇠하기 때문에 심한 성능저하를 가져올 수 있다. 본 논문에서는 조향벡터에 도래각 에러뿐만 아니라 랜덤에러가 있을 때 이에 대처하는 강인한 적응 어레이 기법을 제시한다. 제시된 기법에서는 상관행렬로부터 SIS(signal-plus-interference subspace) 부공간을 구한 후, ULA(uniform linear array) 구조를 이용하여 원하는 신호의 방향벡터 영향을 가능한 줄이면서 간섭 부공간을 추출하고 이에 직교하도록 가중벡터를 구하여 조향벡터 에러에 대한 강인성을 얻는다. 제안된 방식은 DCRCB(doubly constrained robust Capon beamformer) 등 기존방식보다 우수한 SINR(signal-to-interference plus noise ratio) 성능을 가짐을 시뮬레이션 결과는 보여준다.

Keywords

References

  1. J. E. Hudson, Adaptive Array Principles. New York: Peregrinus Ltd., 1981.
  2. M. Wax and Y. Anu, "Performance analysis of the minimum variance beamformer in the presence of steering vector errors," IEEE Trans. Signal Process., vol. 44, pp. 938-947, Apr. 1996. https://doi.org/10.1109/78.492546
  3. 최양호, "간섭 널 공간 투사에 의한 신호차단 방식의 적응 빔 형성," 한국통신학회 논문집 제36권 4호(무선통신), pp. 399-406, 2011년 4월.
  4. S.-J. Yu and J.-H. Lee, "Statistical performance of eigenspace-based adaptive array beamformers," IEEE Trans. Antennas Propag., vol. 44, no. 5, pp. 665-671, May 1996. https://doi.org/10.1109/8.496252
  5. L. Chang and C.-C. Yeh, "Effect of pointing errors on the performance of the projection Beamformer," IEEE Trans. Antennas Propag., vol. 41, pp. 1045-1056, Aug. 1993. https://doi.org/10.1109/8.244645
  6. D. D. Feldman and L. J. Griffith, "A projection approach for robust adaptive beamforming," IEEE Trans. Signal Process., vol. 42, pp. 867-876, Apr. 1994. https://doi.org/10.1109/78.285650
  7. M. W. Ganz, R. L. Moses and S. L. Wilson, "Convergence of the SMI and the diagonally loaded SMI algorithms with weak interference," IEEE Trans. Antennas Propag., vol. 38, pp. 394-399, Mar. 1990. https://doi.org/10.1109/8.52247
  8. Z. Tian, K. L. Bell, and H. L. Van Trees, "A recursive least squares implementation for LCMP beamforming under quadratic constraint," IEEE Trans. Signal Process., vol. 49, pp. 1138-1145, June 2001. https://doi.org/10.1109/78.923296
  9. F. Vincent and O. Besson, "Steering vector errors and diagonal loading," IEE Proc. Radar, Sonar, and Naviga., vol. 151, pp. 337-343, Sept. 2004. https://doi.org/10.1049/ip-rsn:20041069
  10. J. Li, P. Stoica, and Z.-S. Wang, "Doubly constrained robust Capon beamforming," IEEE Trans. Signal Process., vol. 52, no. 9, pp. 2407-2423, Sept. 2004. https://doi.org/10.1109/TSP.2004.831998
  11. Y.-H. Choi, "Robust adaptive array with variable uncertainty bound under weight vector norm Constraint," IEICE Trans. Commun., vol. E94-B, pp. 3057-3064, Nov. 2011. https://doi.org/10.1587/transcom.E94.B.3057
  12. B. Noble and J. Daniel, Applied Linear Algebra. New Jersey: Prentice-Hall, 1988.