양자통신의 개요 및 전망 (양자오류정정부호를 중심으로)

  • Published : 2012.03.30

Abstract

양자통신(Qauntum Communication)은 양자역학에 기반을 둔 새로운 패러다임의 통신방식으로서 0과 1의 형태로 표현할 수 없거나 곤란한 형태의 정보를 생성, 전송, 처리, 저장하는 수단을 제공한다. 1990년대 중반부터 발전된 양자컴퓨팅 기술 및 양자오류정정부호 기술 그리고 양자정보이론 기술 등을 기반으로 발전해 오고 있으며 특히 최근 들어 국내외에서 많은 관심과 연구성과를 나타내고 있다. 본 논문에서는 국외 양자통신 연구 동향을 소개하고 향후 연구 방향을 살펴본다

Keywords

References

  1. A.R. Calderbank and P.W, Shor, "Good quantum error-correcting codes exist," Phys. Rev. A, vol. 54, no. 2, pp. 1098-1105, August 1996. https://doi.org/10.1103/PhysRevA.54.1098
  2. Q.R. Calderbank, E.M. Rains, P.W, Shor and N.J.A. Sloane, "Quantum error correction via codes over GF(4):' ZEEE Trans. on Infunnation Theogl, vol, 44, no. 4, pp. -1.1369-138J7ul,y 1998.
  3. R. G. Gallager, "Low-density parity-check codes," IEEE Tram. on Inforinariorz Theory, vol. 8, no. 1, PP. 21-28, January 1962. https://doi.org/10.1109/TIT.1962.1057683
  4. P.W. Shor, Proceedings 35th Annual Symposium on Foundations of computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1994, P. 124.
  5. Grover L.K., "A fast quantum mechanical algorithm for database search," Proceedings, 28th Annual ACM Symposium on the Theory of Computing, P. 212 (May 1996)
  6. S. Wieder, The Foundations of Quantum Theory. Academic Press, 1973.
  7. E. Hagley et al., "Generation of Einstein-Podolsky-Rosen Pairs of Atoms," Phys. Rev. Lett, 79, 1997. pp. 1-5. https://doi.org/10.1103/PhysRevLett.79.1
  8. A. Zeilinger, Scientific American, April 2000, P. 32; The Physics of Quantum Information, edited by D. Bouwmeester, A. Ekert, and A. Zeilinger, Springer-Verlag, Berlin, Ch. 3, 2000.
  9. Michael A. Nielsen and Isaac L. Chuang, "Quantum Computation and Quantum Information," Cambridge University Press, 2000
  10. P. Shor, "Scheme for reducing decoherence in quantum computer memory," Phys. Rev. A, vol. 52 (R), pp. 2493-2496, 1995. https://doi.org/10.1103/PhysRevA.52.R2493
  11. A. M. Steane, "Error correcting codes in quantum theory," Phys. Rev. Lett., vol. 77, no. 5, PP. 793-797, Jul 1996. https://doi.org/10.1103/PhysRevLett.77.793
  12. A. Steane, "Multiple Particle Interference and Quantum Error Correction," Proc. of the Royal Society A, vol. 452, no. 1954, PP. 2551-2577, November 1996. https://doi.org/10.1098/rspa.1996.0136
  13. C. Berrou. A. Glavieux, and P. Thitimajshima, "Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes," Proc. ICC'93, May 1993.
  14. D. J. C. MacKay, "Good Error-Correcting Codes Based on Very Sparse Matrices," IEEE Trans. on Information Theory, vol. 45, no. 2, pp. 399-431, March 1999. https://doi.org/10.1109/18.748992
  15. D. J. C. MacKay, G. Mitchison, and P. L. McFadden, "Sparse-Graph Codes for Quantum Error-Correction," IEEE Trans. on Information Theory, vol. 50, no. 10, PP. 2315-2330, October 2004. https://doi.org/10.1109/TIT.2004.834737
  16. H. Lou and J. Garcia-Frias, "Quantum Error-Correction Using Codes with Low-Density Generator Matrix," Proc. SPAWC'05, June 2005.
  17. H. Lou and J. Garcia-Frias, "On the Application of Error- Correcting Codes with Low-Density Generator Matrix over Different Quantum Channels," Proc. International Symposium on Turbo Codes, April 2006.
  18. G. Mackey, Mathematical Foundations of Quantum Mechanics, W. A. Benjamin, 1963
  19. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955.