DOI QR코드

DOI QR Code

Redox Characteristic and Evolution of a Fragipan of Gangreung Series Commonly Developed in Coastal Terraces

해성단구지에서 발달된 강릉통의 이쇄경반층(Btx) 토양의 산화.환원적 특성에 관한 연구

  • Zhang, Yong-Seon (National Institute of Agricultural Science and Technology) ;
  • Moon, Yong-Hee (National Institute of Agricultural Science and Technology) ;
  • Sonn, Yeon-Kyu (National Institute of Agricultural Science and Technology) ;
  • Hyun, Byung-Keun (National Institute of Agricultural Science and Technology) ;
  • Park, Chan-Won (National Institute of Agricultural Science and Technology) ;
  • Yoon, Sung-Won (National Institute of Agricultural Science and Technology)
  • 장용선 (국립농업과학원 토양비료관리과) ;
  • 문용희 (국립농업과학원 토양비료관리과) ;
  • 손연규 (국립농업과학원 토양비료관리과) ;
  • 현병근 (국립농업과학원 토양비료관리과) ;
  • 박찬원 (국립농업과학원 토양비료관리과) ;
  • 윤성원 (국립농업과학원 토양비료관리과)
  • Received : 2012.04.02
  • Accepted : 2012.04.23
  • Published : 2012.04.28

Abstract

Soil pan typically presents the problems in soil water movement or in aeration which is not appropriate for a plant root growth, In this study physico-chemical characteristics of soils and micromorphological characteristic of clay accumulated zone were investigated to identify redox characteristic and evolution of a fragipan of Gangreung series commonly developed in coastal terraces. Gangreung series is classified as Aquic Fragiudalfs according to the USDA soil taxonomy. It is known that sedimentary ocean floor results in soil pan having parallel liner soil structure due to landscape evolution around 200 to 250 million years ago. it is considered that illite, kaolinite, and vermiculite are major clay minerals contained in a fragipan of Gangreung series. Mixed gray and reddish brown colored band around soil pores was found and would be the redoxmorphic features of fragipan. It is possibly due to accumulated illuvial clay and ferriargillans in soil pores and aggregates in reducing conditions eluding ferrous material. Therefore, mixed colored band around pores in soils of Gangreung series would be developed from the eluted ferrous materials which were accumulated in fragipan during the emerged land formation.

반층토(Hardpan)는 토양수분의 이동 제한이나 토층의 통기불량을 유발하여 식물뿌리 신장을 저해하므로 해성단구지에서 발달된 강릉통(Gangreung series)의 경반층(Duripan)의 생성 원인과 산화 환원적 특성을 규명하기 위하여 토양의 물리-화학적 특성과 점토집적층의 미세형태적 특성을 규명하였다. 강릉통은 신생대 제3기말에서 제4기 초인 200~250만년 전 바다 밑에 퇴적되어 있던 해저지형이 융기되어 형성된 반층 토양으로 토양구조가 평형적(Parallel liner) 분포를 보이며 미농무성 분류법에 따르면 Aquic Fragiudalfs에 속한다. 이쇄경반층(Fragipan)의 산화 환원적 특성을 보이는 적갈색띠층과 회색띠층의 광물학적 특성은 적갈색 띠층에서는 적철석(Hematite, $Fe_2O_3$)이 정성되었으며 회색 띠층에서는 일라이트 강도가 크게 나타났다. 토양입단 및 공극에 집적된 점토(Illuvial clay) 및 철피막(Ferriargillans)이 토층 상부의 유기물이 함유된 토양용액이 토양구조 내 공극에 정체하면서 환원조건을 유발하여 집적된 점토 및 철피막 중에서 철성분(Ferrous materials)이 공극에서부터 용출되면서 현재와 같이 적색층과 암회색층이 교호하는 특징을 보이는 것으로 생각된다. 강릉통에서 이쇄경반층의 주요한 점토광물은 알라이트(Illite), 카올리나이트(Kaolinite), 질석(Vermiculite)이며 적색띠층에 비해 암회색층에서 일라이트 함량이 높게 나타났다. 따라서 강릉통은 해저지형이 융기되는 과정에서 점토 및 철성분의 집적과 압력의 영향으로 경반층이 형성된 후 이쇄경반층에 집적되었던 철성분이 용출되면서 적색층과 암회색층이 교호하는 특징을 보이고 있었다.

Keywords

References

  1. Balbir-Singh and Gilkes, R.J. (1993) The recognition of amorphous silica in indurated soil profiles. Clay Miner., v.28, p.461-474. https://doi.org/10.1180/claymin.1993.028.3.09
  2. Chartres, C.J. and Fitzgerald, J.D. (1990) properties of siliceous cements in some Australian soils and saprolites. Devel. soil sci., v.19, p.199-206. https://doi.org/10.1016/S0166-2481(08)70331-3
  3. Collins, J.F. and Dubhain, T.O. (1980) A micromorphological study of silt concentrations in some Irish podzols. Geoderma v.24, p.215-224. https://doi.org/10.1016/0016-7061(80)90025-7
  4. DeKimpe, C.R. and McKeague, J.A. (1974) Micromorphological, physical, and chemical properties of a Podzolic soil with a fragipan. Can. J. Soil Sci., v.54, p.29-38. https://doi.org/10.4141/cjss74-004
  5. DeKimpe, C.R., Bourbeau, G.A. and Baril, R.W. (1976) Pedological aspects of till deposits in the province of Quebec. p.156-169 In R.F. Legget (ed.) Glacial till: An inter-disciplinary study. Spec. Publ. 12. Royal Society of Canada, Ottawa, ON.
  6. FAO-UNESCO (1975) Soil map of the world(1/5,000,000). FAO, Paris, France.
  7. Habecker, M.A., McSweeney, K. and Madison, F.W. (1990) Identification and genesis of fragipans in Ochrepts of north central Wisconsin. Soil Sci. Soc. Am. J., v.54, p.139-146. https://doi.org/10.2136/sssaj1990.03615995005400010022x
  8. Hallmark, C.T. and Smeck, N.E. (1979) The effect of extractable aluminum, iron, and silicon on strength and bonding of fragipans of northeastern Ohio. Soil Sci. Soc. Am. J., v.43, p.145-150. https://doi.org/10.2136/sssaj1979.03615995004300010028x
  9. Harlan, P.W., Franzmeier, D.P. and Roth, C.B. (1977) Soil formation on loess in southwestern Indiana: II. Distribution of clay and free oxides and fragipan formation. Soil Sci. Soc. Am. J., v.41, p.99-103. https://doi.org/10.2136/sssaj1977.03615995004100010029x
  10. Langohr, R. and Pajares, G. (1983) The chronosequence of pedogenic processes in Fraglossudalfs of the Belgian loess belt. P. 503-510. In P. Bullock and C.P. Murphy (ed.) Soil micromorphology: Soil genesis. 2 vol. Proc. VI Int. Working Meeting on Soil Micromorphology, London, Aug. 1981. Academic Publ., London.
  11. Lindbo, D.L. and Veneman, P.L.M. (1989) Fragipans in the northeastern United States. p.11-31. In N.E. Smeck and E.J. Ciolkosz (ed.) Fragipans: Their occurrence, classification, and genesis. SSSA Spec. Publ. 24. SSSA, Madison, WI.
  12. Lindbo, D.L. and Veneman, P.L.M. (1993) Micromorphology of selected Massachusetts fragipan soils. Soil Sci. Soc. Am. J., p.57, p.437-442. https://doi.org/10.2136/sssaj1993.03615995005700020025x
  13. Miller, M.B., Cooper, T.H. and Rust, R.H. (1993) Differentiation of an eluvial fragipan from dense glacial till in northern Minnesota. Soil Sci. Soc. Am. J., v.57, p.787-796. https://doi.org/10.2136/sssaj1993.03615995005700030027x
  14. Nettleton, W.D., Brasher, B.R., Baumer, O.W. and Darmody, R.G. (1994) Silt flow in soils. p. 361-375. In A.J. Ringrose-Voase and Humphreys, G.S.(ed.) Soil micromorphology: Studies in management and genesis. Proc. IX Int. Working Meeting on Soil Micro-morphology, Townsville, Australia. July 1992. Dev. Soil Sci. v. 22. Elsevier Publ., New York.
  15. NIAST (2000) Taxonomical classify cation of Korean soils. RDA, p.234-235.
  16. NIAST (2000) Analytical methods of soil and plant. National Institute of Agricultural Science and Technology, Rural Development Administration. Suwon, Korea.
  17. Olson, G.W. and Hole, F.D. (1967) The fragipan soils of northeastern Wisconsin. Trans. Wis. Acad. Sci. Arts Lett., v.56, p.173-184.
  18. Soil Survey Staff (1999) Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd ed. USDA Agric. Hondb. 436. U.S. Gov. Print. Office, Washington, DC.
  19. Stoops, G. and Eswaran, H. (1986) Soil micromorphology. Van Nostrand Reinhold, New York, USA
  20. USDA, NRCS (1996) Soil survey laboratory methods manual. Soil Survey Investigation Report No.42 (revised). USDA-NRCS, Washington.
  21. USDA, Soil Survey Division Staff. (1993) Soil Survey Manual. Agricultural Handbook 18. USDA-NRCS, Washington.
  22. Veneman, P.L.M. and Bodine, S.M. (1982) Chemical and morphological soil characteristics in a New England drainage to posequence. Soil Sci. Soc. Am. J., v.46, p.359-363. https://doi.org/10.2136/sssaj1982.03615995004600020029x
  23. Vepraskas, M.J. and Wilding, L.P. (1983) Albic neoskeletans in agillic horizons as indices of seasonal saturation and iron reduction. Soil Sci. Soc. Am. J., v.47, p.1202-1208. https://doi.org/10.2136/sssaj1983.03615995004700060028x
  24. Yang, J.E., Chung, J.B., Kim, J.E. and Lee, K.S. (2008) Agriculture Environmental Science. CIR Press.
  25. Yassoglou, N.J. and Whiteside, E.P. (1960) Morphology and genesis of some soils containing fragipans in northern Michigan. Soil Sci. Soc. Am. Proc., v.24, p.396-407. https://doi.org/10.2136/sssaj1960.03615995002400050026x
  26. Yoon, S.O., Hwang, S.I. and Ban, H.K. (2003) Geomorphic Development of Marine Terraces at Jeongdongjin-Daejin area on the East Coast, Central Part of Korean Peninsula. Korean Geo. Soc. v.38, p.156-172.