DOI QR코드

DOI QR Code

Numerical Study on Soot Formation in Opposed-flow Nonpremixed Flame by Mixing Toluene

톨루엔 혼합에 따른 대향류 확산화염 내 매연 생성에 대한 수치적 연구

  • Choi, Jae-Hyuk (Division of Marine System Engineering Korea Maritime University) ;
  • Yoon, Seok-Hun (Division of Marine System Engineering Korea Maritime University) ;
  • Yoon, Doo-Ho (Busan Campus of Korea Polytechinics VII)
  • 최재혁 (한국해양대학교 기관시스템공학부) ;
  • 윤석훈 (한국해양대학교 기관시스템공학부) ;
  • 윤두호 (한국폴리텍 VII대학 부산캠퍼스 컴퓨터응용금형과)
  • Received : 2012.01.26
  • Accepted : 2012.04.23
  • Published : 2012.04.30

Abstract

A numerical simulation has been performed to investigate effects of toluene mixing on soot formation in pure ethylene opposed-flow nonpremixed flame. Mixture ratios of toluene were 3%, 5%, 10%, and 20%. Senkin code for 0-D simulation and oppdif code for 1-D simulation based on CHEMKIN III were utilized. 0-D results by senkin showed that concentrations of methyl radicals and benzene were increased with increasing toluene mixture ratio. This implied that the mixing of toluene in pure ethylene diffusion flame produces more PAHs and soot than those of pure ethylene flame. 1-D result of 10 % toluene reaction by oppdif code showed that production rate for H radical was a crucial factor for benzene formation. These results imply that methyl radical, benzene and H radical play a important role on soot formation in diffusion flames.

매연 생성에 대하여 톨루엔의 영향을 알아보기 위하여 순수에틸렌 대향류 확산화염에 톨루엔을 소량 혼합하여 수치해석을 수행하였다. 톨루엔($C_7H_8$)의 혼합 비율은 3%, 5%, 10%, 및 20%로 하였다. 계산에는 CHEMKIN III 기반의 Senkin 코드와 oppdif 코드를 이용하여 0-D 계산과 1-D 계산을 수행하였다. 0-D의 Senkin 계산에서는 톨루엔의 혼합율이 증가할수록 메틸라디칼의 농도는 증가하고 이에 따른 벤젠의 농도도 증가하였다. 이는 순수 에틸렌 화염에 톨루엔을 혼합할 경우 더 많은 매연이 생성될 것이라는 걸 의미한다. oppdif 코드에 의한 1-D 계산에서는 10% 톨루엔 반응식으로부터는 H 라디칼의 생성율이 결정적인 역할을 한다는 것을 알 수 있었다. 위 결과들로부터 확산화염 내 매연 생성에 있어 메틸라디칼, 벤젠과 H 라디칼이 중요한 역할을 한다는 것을 알 수 있었다.

Keywords

References

  1. 최재혁, 이경우, 김만응, 최병철, 임인규(2009), 액체연료의 매연 및 PAH 생성특성에 관한 연구, 한국마린엔지니어링 학회 전기학술대회, pp. 145-147.
  2. 한국자동차공학회(2010), 2030 자동차 기술 전망, 사단법인 한국자동차공학회, pp. 90-156.
  3. Andrae, J. C. G. and R. A. Head(2009), HCCI experiments with gasoline surrogate fuels modeled by a semi detailed chemical kinetic model Original, Combustion and Flame 156, pp. 842-851. https://doi.org/10.1016/j.combustflame.2008.10.002
  4. Choi, B. C., S. K. Choi and S. H. Chung(2011a), Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames, Proceedings of the combustion institute 33, pp. 606-616.
  5. Choi, B. C., S. K. Choi, S. H. Chung, J. S. Kim and J. H. Choi(2011b), Experimental and numerical investigation of fuel mixing effects on soot structure in counterflow diffusion flames, International Journal of Automotive Technology, Vol. 12, No. 2, pp. 183-191. https://doi.org/10.1007/s12239-011-0022-z
  6. D'Anna, A., A. Violi and A. D'Alessio(2000), Modeling the rich combustion of aliphatic hydrocarbons, Combust. Flame, Vol. 121, pp. 418-429. https://doi.org/10.1016/S0010-2180(99)00163-7
  7. Frenklach, M., D. W. Clary, C. William, J. R. Gardiner and E. S. Stephen(1984) Detailed Kinetic Modeling of Soot Formation in Shock-Tube Pyrolysis of Acetylene, 20th Proc. Combust. Inst., pp. 887-901.
  8. Glassman, I.(1988), Soot Formation in Combustion Process, 22th Proc. Combust. Inst., pp. 295-311.
  9. Hernandez, J. J., J. Sanz-Argent, J. Benajes and S. Molina(2008), Selection of a Diesel Fuel Surrogate for the Prediction of Auto-ignition under HCCI Engine Conditions, Fuel, Vol. 87, No. 6, pp. 655-665. https://doi.org/10.1016/j.fuel.2007.05.019
  10. Kang, K. T., J. Y. Hwang, S. H. Chung and W. Lee(1997), Soot zone structure and sooting limit in diffusion flames: comparison of counterflow and co-flow flames, Combust. Flame, Vol. 109, pp. 266-281. https://doi.org/10.1016/S0010-2180(96)00163-0
  11. Marinov, N. M., W. J. Pitz, C. K. Westbrook, A. E. Lutz, A. M. Vincitore and S. M. Senkan(1998), Chemical Kinetic Modeling of a Methane Opposed-Flow Diffusion Flame and Comparison to Experiments, Symposium International on Combustion, Vol. 27, Issue 1, pp. 605-613. https://doi.org/10.1016/S0082-0784(98)80452-9
  12. McEnally, C. S. and L. D. Pfefferle(2007), The effects of dimethyl ether and ethanol on benzene and soot formation in ethylene nonpremixed flames, Proc. Combust. Inst., Vol. 31, pp. 603-610. https://doi.org/10.1016/j.proci.2006.07.005
  13. Miller, J. A.(1996), Theory and Modeling in Combustion Chemistry, 26th Proc. Combust. Inst., pp. 461-480.
  14. Lutz, A. E., R. J. Kee and J. A. Miller(1997a), SENKIN: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, Report No. SAND87-8248, Sandia National Laboratories, pp. 4-30.
  15. Lutz, A. E., R. J. Kee, J. F. Grcar and F. M. Rupley (1997b), OPPDIF: A Fortran Program for Computing Opposed - Flow Diffusion Flames, Report No. SAND96-8243, Sandia National Laboratories, pp. 3-33.
  16. Randall L. Vander Wal., K. A. Jensen and M. Y. Choi(1997), Simultaneous Laser-Induced Emission of Soot and Polycyclic Aromatic Hydrocarbons Within a Gas-Jet Diffusion Flame, Combust. Flame Vol. 109, pp. 399-414. https://doi.org/10.1016/S0010-2180(96)00189-7
  17. Song, K. H., P. Nag, T. A. Lizinger and D. C. Haworth (2003), Effects of oxygenated additives on aromatic species in fuel-rich, premixed ethane combustion: a modeling study, Comb. Flame., Vol. 135, pp. 341-349. https://doi.org/10.1016/S0010-2180(03)00180-9
  18. Yoon, S. S., S. M. Lee and S. H. Chung(2005), Effect of mixing methane, ethane, propane, and propene on the synergistic effect of PAH and soot formation in ethylene-base counterflow diffusion flames, Proc. Combust. Inst., Vol. 30, pp. 1417-1424. https://doi.org/10.1016/j.proci.2004.08.038
  19. Yoon, S. S., D. H. Ahn and S. H. Chung(2008), Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation , Comb. Flame., Vol. 154, pp. 368-377. https://doi.org/10.1016/j.combustflame.2008.04.019

Cited by

  1. 정적 연소 조건에서 Octane 단일 연료 액적의 매연 생성 거동에 관한 연구 vol.41, pp.6, 2017, https://doi.org/10.3795/ksme-b.2017.41.6.389
  2. 알케인계 단일 연료 액적의 Soot 생성 특성에 관한 실험적 연구 vol.22, pp.2, 2012, https://doi.org/10.15435/jilasskr.2017.22.2.80