Cycles in Conditional Faulty Enhanced Hypercube Networks

  • Liu, Min (College of Science, China Three Gorges University) ;
  • Liu, Hongmei (College of Science, China Three Gorges University)
  • Received : 2011.01.26
  • Accepted : 2011.06.27
  • Published : 2012.04.30

Abstract

The architecture of an interconnection network is usually represented by a graph, and a graph G is bipancyclic if it contains a cycle for every even length from 4 to ${\mid}V(G){\mid}$. In this article, we analyze the conditional edge-fault-tolerant properties of an enhanced hypercube, which is an attractive variant of a hypercube that can be obtained by adding some complementary edges. For any n-dimensional enhanced hypercube with at most (2n-3) faulty edges in which each vertex is incident with at least two fault-free edges, we showed that there exists a fault-free cycle for every even length from 4 to $2^n$ when n($n{\geq}3$) and k have the same parity. We also show that a fault-free cycle for every odd length exists from n-k+2 to $2^n-1$ when n($n{\geq}2$) and k have the different parity.

Keywords

References

  1. C. Q. Liu, H. M. Liu, and L. Ma, "Edge-fault-tolerant properties of enhanced hypercubes," J. Inf. Decision Sci., vol. 4, pp. 285-290, 2009.
  2. S. Latifi, S. Q. Zheng, and N. Bagherzadeh, "Optimal ring embedding 178-184.
  3. X. B. Chen, "Many-to-many disjoint paths in faulty hypercubes," Inf. Sci., vol. 179, no. 18, pp. 3110-3115, 2009. https://doi.org/10.1016/j.ins.2009.05.006
  4. M. Y. Chan and S. J. Lee, "On the existance of hamiltoanian circuits in faulty hypercubes," SIAM J. Discrete Math., vol. 4, pp. 511-527, 1991. https://doi.org/10.1137/0404045
  5. L. Bhuyan and D. P. Agrawal, "Generalized hypercube and hyperbus structures for a computer networks," IEEE Trans. Comput., vol. 33, pp. 323-333, 1984.
  6. N. F. Tzeng and S. Wei, "Enhanced hypercube," IEEE Trans. Comput., vol. 3, pp. 284-294, 1991.
  7. H. M. Liu, "The structural features of enhanced hypercube networks," in Proc. ICNC, 2009, pp. 345-348.
  8. H.M. Liu, "Properties and performance of enhanced hypercube networks," J. Syst. Sci. Inf., vol. 3, pp. 251-256, 2006.
  9. H. M. Liu, "The construction of disjoint paths in folded hypercube," J. Syst. Sci. Inf., vol. 8, pp. 97-102, 2010.
  10. J. M. Xu and M. J. Ma, "Cycles in folded hypercubes," Applied Mathematics Lett., vol. 19, no. 2, pp. 140-145, 2006. https://doi.org/10.1016/j.aml.2005.04.002
  11. S. Y. Hsieh, "Some edge-fault-tolerant properties of folded hypercube," Networks, pp. 92-101, 2007.
  12. T. K. Li, C. H. T Sai, J. M. Tan, and L. H. Hsu, "Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercube," Inf. Process. Lett., vol. 87, no. 2, pp. 107-110, 2003. https://doi.org/10.1016/S0020-0190(03)00258-8
  13. J. S. Fu, "Longest fault-free paths in hypercubes with vertex faults," Inf. Sci., vol. 176, pp. 759-771, 2006. https://doi.org/10.1016/j.ins.2005.01.011
  14. M. J. Ma, J. M. Xu, and Z. Z. Du, "Edge-fault-tolerant Hamiltonianicity of folded hypercubes," J. University Sci. Technol. China, vol. 36, no. 3, pp. 244-248, 2007.
  15. J. M. Xu, Z. Z. Du, and M. Xu, "Edge-fault-tolerant edge-bipancyclicity of hypercubes," Inf. Process. Lett., vol. 96, no. 4, pp. 146-150, 2005. https://doi.org/10.1016/j.ipl.2005.06.006
  16. C. H. Tsai, "Linear arry and ring embedding in conditional faulty hypercubes," Theoretical Comput. Sci., vol. 314, pp. 431-443, 2002.
  17. J. A. Bondy and U. S. R.Murty, Graph Theory with Application Networks. London, Kluwer Academic Publishers, 1976.
  18. M. C. Yang, J. M. Tan, and L. H. Hsu, "Highly fault-tolerant cycle embedding of hypercubes," J. Syst. Architecture, vol. 53, no. 4, pp. 227-232, 2007. https://doi.org/10.1016/j.sysarc.2006.10.008
  19. C. H. Tsai, J. J. M. Tan, T. Liang, and L. H. Hsu, "Fault tolerant Hamiltonian laceability of hypercubes," Inf. Process. Lett., vol. 83, pp. 301-306, 2002. https://doi.org/10.1016/S0020-0190(02)00214-4
  20. C. H. Tsai and Y. C. Lai, "Conditional edge-fault-tolerant edgebipancyclicity of hypercubes," Inf. Sci., vol. 177, no. 24, pp. 5590-5597, 2007. https://doi.org/10.1016/j.ins.2007.06.013
  21. Y. Saad and M. H. Schultz, "Topological properties of hypercubes," IEEE Trans. Comput., vol. 37, no. 7, pp. 867-872, 1988. https://doi.org/10.1109/12.2234
  22. J. M. Xu, M. j. Ma, and Z. Z. Du, "Edge-fault-tolerant properties of hypercubes and folded hypercubes," Australasian J. Combinatorics, vol. 35, pp. 7-16, 2006.
  23. C. N. Kuo and S. Y. Hsieh, "Pancyclicity and bipancyclicity of conditional faulty folded hypercubes," Inf. Sci., 2010.
  24. S. A. Choudum and R. U. Nandini, "Complete binary trees in folded and enhanced cube," Networks, vol. 43, pp. 266-272, 2004. https://doi.org/10.1002/net.20002
  25. J. S. Fu and G. H. Chen, "Hamiltonicity of the hierarchical cubic network," Theory Comput. Syst., vol. 35, pp. 57-79, 2002.
  26. P. Y. Tsai, J. S. Fu, and G. H. Chen, "Embedding Hamiltonian cycles in alternating group graphs under conditional fault model," Inf. Sci., vol. 179, no. 6, pp. 851-857, 2009. https://doi.org/10.1016/j.ins.2008.10.030
  27. D. F. Hsu, "Interconnection networks and algorithms," Networks, vol. 23, no. 4, Special issue, 1993.
  28. F. P. Preparata and J. Vuillemin, "The cube-connected cycles: A versatile network for parallel computation," Commun. ACM, vol. 24, pp. 300-309, 1981. https://doi.org/10.1145/358645.358660
  29. S. Y. Hsieh and C. W. Lee, "Pancyclicity of restricted hypercube-like networks under the conditional fault model," SIAM J. Discrete Mathematics, vol. 23, no. 4, pp. 2010-2019, Jan. 2010.
  30. S. Y. Hsieh and C.W. Lee, "Conditional edge-fault hamiltonicity of matching composition networks," IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 4, pp. 581-592, Apr. 2009. https://doi.org/10.1109/TPDS.2008.123
  31. S. Y. Hsieh and N.W. Chang, "Extended fault-tolerant cycle embedding in faulty hypercubes," IEEE Trans. Reliab., vol. 58, no. 4, pp. 702-710, Dec. 2009. https://doi.org/10.1109/TR.2009.2034286
  32. S. Y. Hsieh and N. W. Chang, "Pancyclicity on the Mobius cube with both faulty nodes and faulty edges," IEEE Trans. Comput. vol. 55, no. 7, pp. 845-863, 2006.
  33. C. N. Kuo and S. Y. Hsieh, "Pancyclicity and bipancyclicity of conditional faulty folded hypercubes," Inf. Sci., vol. 180, no. 15, pp. 2904-2914, Aug. 2010. https://doi.org/10.1016/j.ins.2010.04.003
  34. S. Y. Hsieh and Y.-R. Cian, "Conditional edge-fault hamiltonicity of augmented cubes," Inf. Sci., vol. 180, no. 13, pp. 2596-2617, July 2010. https://doi.org/10.1016/j.ins.2010.03.005
  35. S. Y. Hsieh and C. Y. Wu, "Edge-fault-tolerant hamiltonicity of locally twisted cubes under conditional edge faults," J. Combinatorial Optimization, vol. 19, no. 1, pp. 16-30, Jan. 2010. https://doi.org/10.1007/s10878-008-9157-x
  36. S. Y. Hsieh and C. D. Wu, "Optimal fault-tolerant hamiltonicity of star graphs with conditional edge faults," J. Supercomputing, vol. 49, no. 3, pp. 354-372, Sept. 2009. https://doi.org/10.1007/s11227-008-0242-9
  37. S. Y. Hsieh, C. W. Ho, and G. H. Chen, "Fault-free Hamiltonian cycles in faulty arrangement graphs," IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 3, pp. 223-237, 1999. https://doi.org/10.1109/71.755822
  38. J. M. Xu and M. J. Ma, "A survey on cycle and path embedding in some networks," Frontiers of Mathematics in China. vol. 4, no. 2, pp. 217-252, 2009. https://doi.org/10.1007/s11464-009-0017-5