References
- 강소연, 조정훈, 최선호, 홍민호, 장원복 (2004). "방제시률레이션을 통한 의료시설의 피난안전성 평가", 대한설비공학회 학술발표대회논문집. PP. 1018-1023.
- 조준성, 박종승, 이동호 (2008). "건축물 내에서의 군중 피난 시율레이션 시스템 개발", 한국정보과학회 학술발표논문집 35(2), PP. 225-229.
- Altay, N., Green III, W.G. (2006). OR/MS research in disaster operations management. European Journal of Operational Research 175. 475-493.
- Altshuler, E., Ramos, O., Nunez, Y., Fernandez, J., Batista-Leyva, AJ., Noda, C. (2005). Symmetry breaking in escaping ants. The American Naturalist 166(6). 643-649. https://doi.org/10.1086/498139
- AMP Eclipse, http://www.eclipse.org/amp.
- Argonne National Laboratory, http://www.anl. gov/ index.html
- Borshcev, A., Filippov, A. (2004). From system dynamics and discrete event to practical agent based modeling: reasons, techniques, tools. The 22nd International Conference of the System Dynamics Society.
- Bohn, G. A., Richie, C.G. (1970). Learning by simulation. The validation of disaster simulation: medical scheme planning. Journal of Kansas Medical Society 1(11). 418-425.
- Bradley GE. (1993). A proposed mathematical model for computer prediction of crowd movements and their associated risks In: Smith RA, Dikie JF, editors. Engineering for crowd safety. Amsterdam: Elsevier 303-311.
- Brauer, F., van den Driessche, P., Wu, J. (Eds). Mathematical Epidemiology. Lecture Notes in Mathematics, subseries in Mathematical Biosciences Subseries 1945. 2008.
- Braun, A., Bodmann, E., Oliveira, L., Musse, S.(2003). Modeling individual behaviors in crowd simulation. Computer Animation and Social Agents 16th International Conference.
- Braun, A., Bodmann, B. and Musse, S. (2005). Simulating virtual crowd in emergency situations. Proceedings of ACM Symposium Virtual Reality Software and Technology. 244-252.
- Bush, B.B., Dauelsberg, L. R., LeClaire, R. J., Powell, D. R., DeLand, S.M., Samsa, M.E. (2005). Critical infrastructure protection decision support systems(CIP/DSS) project overview. Los Alamos National Laboratory Report. LA-UR-05-1870.
- Carley, K. M., Fridasma, D.B., Casman E., Yahja, A., Altman, N., Chen, L., Kaminsky, B., Nave, D. (2006). BioWar: Scalable agent-based model for bioattacks. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans 36(2) 252-265. https://doi.org/10.1109/TSMCA.2005.851291
- The Center for Catastrophe Preparedness & Response, http://www.nyu.edu/ccpr.
- Christie, J., Levary, R. R. (1998). The use of simulation in planning the transportation of patients to hospitals following a disaster. Journal of Medical Systems 22(5). 289-300. https://doi.org/10.1023/A:1020521909778
- Clinton, W.J. (1996). Executive Order 13010-Critical Infrastructure Protection. Federal Register 61(138). 37347-37350.
- Coolahan, J.E., Kane , M.T., Schloman, J.F., Koomullil, R.P., Shih, A.M., Ito, Y., Kaisar, E.I., Walsh, K. K. (2008), Design of an urban chemical disaster simulation federation for preparedness and response. 2007 Spring Simulation Interoperability Workshop (paper 07S-SIW-077).
- Conzelmann, G., Boyd, G., Koritarov, V., Veselka, T. (2000). Multi-agent power market simulation using EMCAS. Proceedings of the IEEE PES General Meeting, San Francisco, California.
- Dudenhoeffer, D.D., Permann, M.R. (2006). CIMS: a framework for infrastructure interdependency modeling and analysis. Proceedings of the 2006 Winter Simulation Conference.
- Edmonds, B., Hales, D. (2003). Replication, replication and replication: some hard lessons from model alignment. Journal of Artificial Societies and Social Simulation 6.
- EM-DAT, http://www.emdat.be.
- Epstein, J. M. (2009). Modelling to contain pandemics. In: Nature 460(7245). 687. https://doi.org/10.1038/460687a
- Fredkin, E., Toffoli, T. (1982). Conservative logic. International Journal of Theoretical Physics 21. 219- 253. https://doi.org/10.1007/BF01857727
- Germann, TC. Kadau, K. Longini, IM. Jr., Macken, CA. (2006). Mitigation strategies for pandemic influenza in the United States. Proceedings of National Academic Science USA 103 5935-5940.
- Gilbert, N., Troitzsch, K.G. (1999). Simulation for the social scientist. Open University Press, Philadelphia.
- Gilbert, N., Jager, W., Deffuant, G., Adjali, I. (2007). Complexities in markets: introduction to the special issue. Journal of Business Research 60. 813-815. https://doi.org/10.1016/j.jbusres.2007.01.016
- Global Terrorism Database, http://www.start.umd. edu/gtd.
- Goldspink, C. (2002). Methodological implications of complex systems approaches to sociality: simulation as a foundation for knowledge. Journal of Artificial Societies and Social Simulation 5.
- Gulpinar, N., Rustem, B., Settergren, R. (2004) . Simulation and optimization approaches to scenario tree generation. Journal of Economic Dynamics & Control 28.1291-1315. https://doi.org/10.1016/S0165-1889(03)00113-1
- Henderson, LF. (1971). The statistics of crowd fluids. Nature 229. 381-383. https://doi.org/10.1038/229381a0
- Helbing, D., Molnar, P. (1995). Social force model for pedestrian dynamics. Physical Review E 51(5), 4282-4286. https://doi.org/10.1103/PhysRevE.51.4282
- Helbing, D., Farkas, I., Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature 407(6803), 487-490. https://doi.org/10.1038/35035023
- Huang, C.Y., Sun, C.T., Hsidh, J.L.,Lin, H. (2004). Simulating SARS: Small-World Epidemiological Modeling and Public Health Policy Assessments. Journal of Artificial Societies and Social Simulation 7(4). 2.
- Hughes, RL.(2000). The flow of large crowds of pedestrians. Mathematics and Computers in Simulation 53. 367-379. https://doi.org/10.1016/S0378-4754(00)00228-7
- Hwang, W.T., Han, M.H., Jeong, H.J, Kim E.H, (2008). A predictive model for a radioactive contamination in an urban environment and its performance capability to the EMRAS project. Journal of Nuclear Science and Technology 5.594-597.
- Institute for Homeland Security Solutions, https:// www.ihssnc.org.
- International Journal of Critical Infrastructure Protection, http://www.journals.elsevier.com/ international-journal-of -critical-infrastructure-protection/
- Journal of Artificial Societies and Social Simulation, http://jasss.soc.surrey.ac.uk/JASSS.html
- Kermack, W.O., McKendrick , A.G. (1927). A Contribution to the Mathematical Theory of Epidemics, Proceedings of Royal Society London A 115. 700-721. https://doi.org/10.1098/rspa.1927.0118
- Kornhauser, D., Wilensky, U., Rand, W. (2009). Design of guidelines for agent based model. Journal of Artificial Societies and Social Simulation 12(2). 1. http://jasss.soc.surrey.ac.uk/12/2/1.html.
- Kotenko I. (2010). Agent-Based Modelling and Simulation of Network Cyber-Attacks and Cooperative Defense Mechanisms. Discrete Event Simulations. 223-246.
- Lin , M.C., Manocha, D. (2011). Simulation technologies for evacuation planning and disaster response. Institution for Homeland Security Solutions, https://www.ihssnc.org.
- Lo, SM., Huang HC., Wang, P., Yuen, KK. (2006). A game theory based exit selection model for evacuation. Fire Safety Journal 41, 364-369. https://doi.org/10.1016/j.firesaf.2006.02.003
- Longini, IM. Jr., Halloran, ME, Nizam, A, Yang, Y. (2004). Containing pandemic influenza with antiviral agents. American Journal of Epidemiology 159. 623- 633. https://doi.org/10.1093/aje/kwh092
- Louie, M., Carley, K (2008). Balancing the criticisms: validating multi-agent models of social systems. Simulation Modelling Practice and Theory 16. 242-256. https://doi.org/10.1016/j.simpat.2007.11.011
- Madey, G. R., Szabo, G., Barabasi, A. -L. (2006). WIPER: The integrated wireless phone based emergency response system. In V. N. Alexandrov, G. D. val Albada, P. M. A. Sloot, & J. Dongarra (Eds.), Proceedings of the international conference on computational science (3993, 417-424). Berlin, Germany: Springer-Verlag.
- MASON, http://mason.gmu.edu.
- McKerrow, E. (2003). Understanding WhyDissecting radical Islamist terrorism with agentbased simulation. Los Alamos Science 28. 184-191.
- Mylius, S. D., Hagenaars, T.J., Lugner, A.K., Wallinga, J. (2008). Optimal allocation of pandemic influenza vaccine depends on age, risk and timing. Vaccine 26. 3742-3749. https://doi.org/10.1016/j.vaccine.2008.04.043
- National Infrastructure Simulation and Analysis, http://www.sandia.gov/nisac/index. html, http:// www.lanl.gov/programs/nisac/index.shtml.
- Naizi, M.A., Siddique, Q., Hussain, A., Kolberg, M. (2009). Verification & validation of an agent-based forest fire simulation model. Proceedings of the Agent Directed Simulation Symposium 2010, as part of the ACM SCS Spring Simulation.
- Netlogo, http://ccl.northwestern.edu/netlogo.
- O'Reilly, G.P., Jrad, A., Kelic, A., LeClaire, R. (2007). Telecom critical infrastructure simulations: discrete event simulation vs. dynamic simulation how do they compare? Proceedings of Global Telecommunications Conference (GLOBECOM). 2597-2601.
- Okuyama Y., Sahin S.(2009). Impact Estimation of Disasters: A Global Aggregate for 1960 to 2007, World Bank Policy Research Working Paper No. 4963.
- Pederson, P., Dudenhoeffer, D., Hartley, S., Permann, M. (2006). Critical Infrastructure Interdependency Modeling: A Survey of U.S. and International Research, Idaho National Laboratory, USA.
- Pelechano N, Allbeck JM, Badler NI. Controlling individual agents in high density crowd simulation. In Metaxas D, Popovic J, editors. (2007). Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, San Diego, CA, USA, 3-4 August 2007. 99-108.
- Repast Suite, http://Repast.sourceforge.net.
- Sahin, S. Estimation of Disasters' Economic Impact in 1990-2007: Global Perspectives, Draft (2011).
- Saloma, C., Perez, GJ., Tapang, G., Lim M., Palmes-Saloma C., (2003). Self-organized queuing and scale-free behavior in real escape panic. Proceedings of the National Academy of Sciences of the USA (PNAS) 100(21). 11947-11952.
- Schoenwand, D.A., Barton, D.C., Ehlen, M. A. (2004). An Agent-based Simulation Laboratory for Economics and Infrastructure Interdependency. Sandia Report.
- Swarm Development Group, http://www.swarm.org.
- Toroczkai, Z., Eubank, S. (2005). Agent-based modeling as a decision-making tool. The Bridge 35(4). 22-27.
- Van Minh, L., Adam, C., Canal, R., Gaudou, B., Vinh, HT., Taillandier, P. (2012). Simulation of the emotion dynamics in a group of agents in an evacuation situation, Principles and practice of multi-agent systems. Lecture Note in Computer Science 7057. 604-619.
- Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics 55. 601-644. https://doi.org/10.1103/RevModPhys.55.601
- Wolfram, S. (1984) Universality and complexity in cellular automata. Physica D 10. 1-35. https://doi.org/10.1016/0167-2789(84)90245-8
- Wu, S., Shuman, L., Bidanda, B., Kelley , M., Sochats, K., Balaban, C. (2008). Agent-based Discrete Event Simulation Modeling for Disaster Responses. Proceedings of the 2008 lndustrial Engineering Research Conference.
- Wu, S., Shuman, L.J., Bidanda, B., Kelley, M., Lawson, B., Sochats, K., Balaban, C.D. (2007). System implementation issues of dynamic discrete disaster decision simulation system (D4S2)-phase I. Proceedings of the 2007 Winter Simulation conference.
- Yang, T., Chou, P. (2005). Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method. Mathematics and Computers in Simulation 68. 9-21. https://doi.org/10.1016/j.matcom.2004.09.004
- Zenobia, B., Weber, C., Daim. T. (2009). Artificial markets: a review and assessment of a new venue for innovation research. Technovation. 338-350.
- Zheng, X., Zhong, T., Liu, M. (2009). Modeling crowd evacuation of a building based on seven methodological approaches . Building and Environment 44 437-445. https://doi.org/10.1016/j.buildenv.2008.04.002
- Zoumpoulaki,A., Avradinis. N., Vosinakis, S. (2010). A multi-agent simulation framework for emergency evacuations incorporating personality and emotions. In Artificial Intelligence: Theories, Models and Applications, 6th Hellenic Conference on AI. 423- 428.