초록
본 논문에서는 텍스트 마이닝 분야에서 중요한 부분을 차지하고 있는 문서 클러스터링을 위하여 다목적 유전자 알고리즘을 제안한다. 문서 클러스터링에 있어 중요한 요소 중 하나는 유사한 문서를 그룹화 하는 클러스터링 알고리즘이다. 지금까지 문서 클러스터링에는 k-means 클러스터링, 유전자 알고리즘 등을 사용한 연구가 많이 진행되고 있다. 하지만 k-means 클러스터링은 초기 클러스터 중심에 따라 성능 차이가 크며 유전자 알고리즘은 목적함수에 따라 지역 최적해에 쉽게 빠지는 단점을 갖고 있다. 본 논문에서는 이러한 단점을 보완하기 위하여 다목적 유전자 알고리즘을 문서 클러스터링에 적용해 보고, 기존의 알고리즘과 정확성을 비교 및 분석한다. 성능 시험을 통해 k-means 클러스터링(약 20%)과 기존의 유전자 알고리즘(약 17%)을 비교할 때 본 논문에서 제안한 다목적 유전자 알고리즘의 성능이 월등하게 향상됨을 보인다.
In this paper, the multi-objective genetic algorithm is proposed for the document clustering which is important in the text mining field. The most important function in the document clustering algorithm is to group the similar documents in a corpus. So far, the k-means clustering and genetic algorithms are much in progress in this field. However, the k-means clustering depends too much on the initial centroid, the genetic algorithm has the disadvantage of coming off in the local optimal value easily according to the fitness function. In this paper, the multi-objective genetic algorithm is applied to the document clustering in order to complement these disadvantages while its accuracy is analyzed and compared to the existing algorithms. In our experimental results, the multi-objective genetic algorithm introduced in this paper shows the accuracy improvement which is superior to the k-means clustering(about 20 %) and the general genetic algorithm (about 17 %) for the document clustering.